An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation.

Protein Eng Des Sel

Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium

Published: October 2015

In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzv032DOI Listing

Publication Analysis

Top Keywords

alkynated nanobodies
12
efficient protocol
8
high yield
8
cytoplasmic expression
8
escherichia coli
8
intein-mediated protein
8
protein ligation
8
nanobodies
6
protocol site-specifically
4
site-specifically clickable
4

Similar Publications

Article Synopsis
  • Heptamethine indocyanines are special materials used for seeing things in the near-infrared range, which is useful in medical imaging.
  • The new method reported is easier and more effective for making these materials compared to older methods.
  • This research helps create better imaging tools for finding tumors and makes it easier to see living cells without needing extra washes.
View Article and Find Full Text PDF

Chemical Tagging of Bioactive Amides by Cooperative Catalysis: Applications in the Syntheses of Drug Conjugates.

J Am Chem Soc

July 2023

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

We disclose a practical catalytic method for arming bioactive amide-based natural products and other small-molecule drugs with various functional handles for the synthesis of drug conjugates. We demonstrate that a set of readily available Sc-based Lewis acids and N-based Brønsted bases can function cooperatively to deprotonate amide N-H bonds in polyfunctional drug molecules. An aza-Michael reaction between the resulting amidate and α,β-unsaturated compounds produces an array of drug analogues that are equipped with an alkyne, azide, maleimide, tetrazine, or diazirine moiety under redox and pH-neutral conditions.

View Article and Find Full Text PDF

Genetic code expansion in E. coli enables production of a functional 'ready-to-click' T cell receptor-specific scFv.

N Biotechnol

September 2023

acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. Electronic address:

Article Synopsis
  • Antibody-based cancer therapies, particularly bispecific antibody-drug conjugates, are advancing quickly in the pharmaceutical industry, enhancing immunotherapy's effectiveness.
  • Miniaturized antibody fragments like diabodies, nanobodies, and scFvs show great potential for targeting and penetrating tumor tissues in cancer treatments.
  • This study developed a versatile scFv OKT3 antibody using E. coli, incorporating a unique amino acid for efficient 'click chemistry' conjugation, intending for applications in controlled anti-T cell therapies and cancer imaging.
View Article and Find Full Text PDF

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19.

View Article and Find Full Text PDF

Total Chemical Synthesis of a Functionalized GFP Nanobody.

Chembiochem

October 2022

Oncode Institute and Dept. Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 2, 2333 ZC, Leiden, The Netherlands.

Chemical protein synthesis has proven to be a powerful tool to access homogenously modified proteins. The chemical synthesis of nanobodies (Nb) would create possibilities to design tailored Nbs with a range of chemical modifications such as tags, linkers, reporter groups, and subsequently, Nb-drug conjugates. Herein, we describe the total chemical synthesis of a 123 amino-acid Nb against GFP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!