In order to model the track structure of clinical mega-voltage photon beams in a reasonable time, it is necessary to use a multi-scale approach incorporating a track-structure algorithm for the regions of interest and a condensed history algorithm for the rest of the geometry. This paper introduces a multi-scale Monte Carlo system, which is used to hand off particle trajectory information between the two algorithms. Since condensed history algorithms ignore electrons with energy below a fixed threshold and those electrons are important to the track structure on the micrometre scale, it is necessary to hand over all charged particles to the track-structure algorithm only in a volume that extends beyond the scoring volume. Additionally, the system is validated against experimental results for radio-isotope gamma spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncv172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!