Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency. Immunoadhesins that incorporate normal cellular receptors for viruses or bacterial toxins hold great, but as yet unrealized, potential for treating infectious disease. As decoy receptors, immunoadhesins have potential advantages over pathogen-targeted monoclonal antibodies. Planet Biotechnology has specialized in developing anti-infective immunoadhesins using plant expression systems. An immunoadhesin incorporating the cellular receptor for anthrax toxin, CMG2, potently blocks toxin activity in vitro and protects animals against inhalational anthrax. An immunoadhesin based on the receptor for human rhinovirus, ICAM-1, potently blocks infection of human cells by one of the major causes of the common cold. An immunoadhesin targeting the MERS coronavirus is in an early stage of development. We describe here the unique challenges involved in designing and developing immunoadhesins targeting infectious diseases in the hope of inspiring further research into this promising class of drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749143PMC
http://dx.doi.org/10.1111/pbi.12441DOI Listing

Publication Analysis

Top Keywords

anti-infective immunoadhesins
8
potently blocks
8
immunoadhesins
7
receptor
5
immunoadhesins plants
4
plants immunoadhesins
4
immunoadhesins recombinant
4
recombinant proteins
4
proteins combine
4
combine ligand-binding
4

Similar Publications

Characterization of a Sulfated Anti-HIV Antibody Using an Expanded Genetic Code.

Biochemistry

May 2018

Department of Biomedical Engineering , University of California, Irvine , California 92617 , United States.

Tyrosine sulfation is a crucial post-translational modification for certain antibodies that neutralize HIV. One of the most neutralizing sulfated anti-HIV antibodies, E51, contains a region in its VCDR3 loop with five tyrosine (Tyr) residues, which are hypothesized to be partially or fully sulfated to bind to HIV's gp120 coat protein. However, the gp120-binding contribution of each sulfate or more complex sulfation patterns is unknown.

View Article and Find Full Text PDF

Immunoadhesins are engineered proteins combining the constant domain (Fc) of an antibody with a ligand-binding (adhesion) domain. They have significant potential as therapeutic agents, because they maintain the favourable pharmacokinetics of antibodies with an expanded repertoire of ligand-binding domains: proteins, peptides, or small molecules. We have recently reported that the addition of a cholesterol group to two HIV antibodies can dramatically improve their antiviral potency.

View Article and Find Full Text PDF

Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency.

View Article and Find Full Text PDF

Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins.

View Article and Find Full Text PDF

Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!