In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918331 | PMC |
http://dx.doi.org/10.1038/ncomms8936 | DOI Listing |
Sensors (Basel)
November 2024
Graduate School of Applied Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan.
Various types of dielectrophoresis (DEP) cell separation devices using AC electric fields have been proposed and developed. However, its capability is still limited by a lack of quantitative characterization of the relationship between frequency and force. In the present study, this limitation was addressed by developing a method capable of fast and accurate quantification of the dielectric properties of biological cells.
View Article and Find Full Text PDFElectrophoresis
November 2024
School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
There is tantalizing evidence that proteins can be accurately and selectively manipulated by higher order electric field effects within microfluidic devices. The accurate and precise manipulation of proteins in these platforms promises to disrupt and revolutionize many fields, most notably analytical biochemistry. Several lines of experimental evidence suggest much higher forces are generated compared to those calculated from traditional theories and those higher forces arise from subtle structural features of the proteins providing selectivity.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka City 239-0802, Kanagawa, Japan.
Technologies for rapid and high-throughput separation of rare cells from large populations of other types of cells have recently attracted much attention in the field of bioengineering. Among the various cell separation technologies proposed in the past, dielectrophoresis has shown particular promise because of its preciseness of manipulation and noninvasiveness to cells. However, one drawback of dielectrophoresis devices is that their application of high voltage generates Joule heat that exposes the cells within the device to high temperatures.
View Article and Find Full Text PDFLab Chip
November 2024
Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
This work presents an innovative all-electrical platform for selective single-particle manipulation. The platform combines microfluidic impedance cytometry for label-free particle characterization and dielectrophoresis for contactless multi-way particle separation. The microfluidic chip has a straightforward coplanar electrode layout and no particle pre-focusing mechanism is required.
View Article and Find Full Text PDFBiosensors (Basel)
August 2024
2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!