Cutaneous lipids, endogenously synthetized and transported by lipoproteins, play a pivotal role in maintaining skin barrier. An impairment of extracutaneous lipid trafficking leads to the development of xanthomas, mostly arising in hyperlipidemic patients, but also in subjects with high-density lipoprotein (HDL) deficiency. The aim of this work was to evaluate, in a genetically modified mouse model, lacking two protein components of HDL particles, apolipoprotein(apo)E and apoA-I, the effect of HDL deficiency on skin morphology. Control mice (C57BL/6), apoE deficient mice (EKO), apoA-I deficient mice (A-IKO) and apoA-I/apoE double knockout mice (A-IKO/EKO) were maintained on a low-fat/low-cholesterol diet up to 30 weeks of age. At sacrifice, skin biopsies were processed for light (LM) and transmission electron microscopy (TEM). Whereas the skin of EKO, A-IKO, and C57BL/6 mice was comparable, LM analysis in A-IKO/EKO mice showed an increase in dermal thickness and the presence of foam cells and T lymphocytes in reticular dermis. TEM analysis revealed the accumulation of cholesterol clefts in the papillary dermis and of cholesterol crystals within foam cells. In conclusion, A-IKO/EKO mice represent an experimental model for investigating the cutaneous phenotype of human HDL deficiency, thus mimicking a condition in which human xanthomatous lesions can develop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2015.07.032DOI Listing

Publication Analysis

Top Keywords

hdl deficiency
12
high-density lipoprotein
8
genetically modified
8
mice
8
skin morphology
8
deficient mice
8
a-iko/eko mice
8
foam cells
8
skin
5
deficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!