Regulation of succinate dehydrogenase and tautomerization of oxaloacetate.

Adv Enzyme Regul

Department of Biochemistry, School of Biology, Moscow State University, U.S.S.R.

Published: March 1990

Highly purified succinate-ubiquinone reductase catalyzes the oxidation of L- or D-malate with a Km and initial Vmax equal to approximately 10(-3) M and approximately 100 nmol/min/mg of protein, respectively. The malate dehydrogenase activity of succinate dehydrogenase rapidly decreases regardless of the presence of glutamate plus glutamate-oxaloacetate transaminase. The inhibitor trapping system, however, prevents the inactivation of succinate dehydrogenase under the conditions when the rate of tautomeric oxaloacetate enol in equilibrium oxaloacetate ketone interconversion is high. These results suggest that enol oxaloacetate is an immediate product of malate oxidation at the succinate dehydrogenase active site. Two proteins (Mr 37 and 80 kD) which catalyze the oxaloacetate tautomerase reaction were isolated from the mitochondrial matrix. Some physico-chemical and kinetic properties of these enzymes were characterized. The larger protein was identified as inactive aconitase. The system containing succinate dehydrogenase, L-malate, glutamate plus transaminase and oxaloacetate tautomerase was reconstituted. Such a system is capable of oxidizing malate to aspartate without rapid inactivation of succinate dehydrogenase. Taken together, the data obtained emphasize a significant role of enzymatic oxaloacetate tautomerization in the control of the succinate dehydrogenase activity in the mitochondrial matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0065-2571(89)90076-9DOI Listing

Publication Analysis

Top Keywords

succinate dehydrogenase
28
dehydrogenase
8
dehydrogenase activity
8
inactivation succinate
8
oxaloacetate tautomerase
8
mitochondrial matrix
8
oxaloacetate
7
succinate
6
regulation succinate
4
dehydrogenase tautomerization
4

Similar Publications

Discovery of New Benzohydrazide Derivatives Containing 4-Aminoquinazoline as Effective Agricultural Fungicides, the Related Mechanistic Study, and Safety Assessment.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.

A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.

View Article and Find Full Text PDF

Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review.

Ecotoxicology

January 2025

Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.

As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

Background: Plant diseases cause huge losses in agriculture worldwide every year, but the prolonged use of current commercial fungicides has led to the development of resistance in plant pathogenic fungi. Therefore, there is an urgent need to develop new, efficient, and green fungicides.

Results: Twenty-three nootkatone-based thiazole-hydrazone compounds were designed, synthesized, and characterized by Fourier-transform infrared (FTIR), proton (H) nuclear magnetic resonance (NMR), carbon-13 (C) NMR, and high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!