We describe restriction site associated RNA sequencing (RARseq), an RNAseq-based genotype by sequencing (GBS) method. It includes the construction of RNAseq libraries from double stranded cDNA digested with selected restriction enzymes. To test this, we constructed six single- and six-dual-digested RARseq libraries from six F2 pitcher plant individuals and sequenced them on a half of a Miseq run. On average, the de novo approach of population genome analysis detected 544 and 570 RNA SNPs, whereas the reference transcriptome-based approach revealed an average of 1907 and 1876 RNA SNPs per individual, from single- and dual-digested RARseq data, respectively. The average numbers of RNA SNPs and alleles per loci are 1.89 and 2.17, respectively. Our results suggest that the RARseq protocol allows good depth of coverage per loci for detecting RNA SNPs and polymorphic loci for population genomics and mapping analyses. In non-model systems where complete genomes sequences are not always available, RARseq data can be analyzed in reference to the transcriptome. In addition to enriching for functional markers, this method may prove particularly useful in organisms where the genomes are not favorable for DNA GBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524703PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134855PLOS

Publication Analysis

Top Keywords

rna snps
16
restriction site
8
site associated
8
associated rna
8
rna sequencing
8
sequencing rarseq
8
rarseq data
8
rna
6
rarseq
6
development transcriptomic
4

Similar Publications

Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.

Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.

View Article and Find Full Text PDF

Background: Psychosis (broadly delusions and hallucinations) has a cumulative disease prevalence of around 40% in Alzheimer's disease (AD). The epigenomic, genomic, and neuropathological data provide powerful evidence that AD+P has a distinct neurobiological profile. Here, we used the weighted gene co-expression network analysis (WGCNA) method to investigate DNA methylation associated with AD+P in the dorsolateral prefrontal cortex of 153 post-mortem brain samples.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.

Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.

View Article and Find Full Text PDF

Background: APOE*4 is the strongest genetic risk for late-onset Alzheimer's disease (AD), but other genetic loci may counter its detrimental effect, providing therapeutic avenues. Expanding beyond non-Hispanic White subjects, we sought to additionally leverage genetic data from non-Hispanic and Hispanic subjects of admixed African ancestry to perform trans-ancestry APOE*4-stratified GWAS, anticipating that allele frequency differences across populations would boost power for gene discovery.

Method: Participants were ages 60+, of European (EU; ≥75%) or admixed African (AFR; ≥25%) ancestry, and diagnosed as cases or controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!