Ion-selective electrodes (ISEs) containing neutral ionophores are used in clinical, industrial, and environmental analysis. The wide range of applications requires deep theoretical description. This work concentrates on the development of the general approach to the description of electro-diffusion processes, namely, Nernst-Planck-Poisson (NPP) model to allow the description of the time-dependent responses in the case of complexation reactions occurring in the ion-selective membranes. The impact of the chemical reaction on the calibration curves and apparent selectivity of ISE is discussed. Results obtained using NPP model with time-dependent reaction are compared with those obtained with the Phase Boundary Model (PBM), as well as with the previous solutions of NPP model, using the infinite reaction rates and constant ligand concentration assumption. The validity of these assumptions is investigated and the limitations of PBM in the description of neutral-carrier ISE are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b00065 | DOI Listing |
Biotechnol Bioeng
January 2025
Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China.
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.
View Article and Find Full Text PDFACS ES T Water
January 2025
Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining, 810016, China. Electronic address:
With increasing urbanization pressures, there is an urgent need to improve the urban residents' well-being and achieve the sustainable development goals (SDGs). Ecosystem services (ESs) are vital for human well-being (HW) and survival, providing essential benefits like clean water while supporting the SDGs. However, understanding the impact mechanism of urban ESs on the HW under the framework of the SGDs in a changing world remains challenging.
View Article and Find Full Text PDFNPP Digit Psychiatry Neurosci
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA.
Front Plant Sci
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.
Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!