In animal ecology, a question of key interest for aquatic species is how changes in movement behavior are related in the horizontal and vertical dimensions when individuals forage. Alternative theoretical models and inconsistent empirical findings mean that this question remains unresolved. Here we tested expectations by incorporating the vertical dimension (dive information) when predicting switching between movement states ("resident" or "directed") within a state-space model. We integrated telemetry-based tracking and diving data available for four seal species (southern elephant, Weddell, antarctic fur, and crabeater) in East Antarctica. Where possible, we included dive variables derived from the relationships between (1) dive duration and depth (as a measure of effort), and (2) dive duration and the postdive surface interval (as a physiological measure of cost). Our results varied within and across species, but there was a general tendency for the probability of switching into "resident" state to be positively associated with shorter dive durations (for a given depth) and longer postdive surface intervals (for a given dive duration). Our results add to a growing body of literature suggesting that simplistic interpretations of optimal foraging theory based only on horizontal movements do not directly translate into the vertical dimension in dynamic marine environments. Analyses that incorporate at least two dimensions can test more sophisticated models of foraging behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1890/14-0469.1DOI Listing

Publication Analysis

Top Keywords

dive duration
12
vertical dimension
8
postdive surface
8
dive
6
animal tracking
4
tracking depths
4
depths synthesizing
4
synthesizing horizontal--vertical
4
horizontal--vertical movement
4
movement relationships
4

Similar Publications

Sex-based variations in breath-holding: oxygen storage and diving response among non-divers.

Front Physiol

January 2025

Department of Health Sciences, Environmental Physiology Group, Mid Sweden University, Östersund, Sweden.

Breath-hold diving performances are typically better in men than in women. However, it is still being determined if there are differences in the physiological responses to breath-holding between the sexes. We conducted a study comparing the maximum breath-hold duration, heart rate (HR) reduction, peripheral oxygen saturation (SpO), and spleen volume and contraction in 37 men and 44 women, all of whom had no prior breath-holding experience.

View Article and Find Full Text PDF

This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the cardiodepressive impact.

View Article and Find Full Text PDF

Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.

Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions.

View Article and Find Full Text PDF

Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery.

View Article and Find Full Text PDF

The use of animal-borne devices (= biologgers) has revolutionized the study of marine megafauna, yet there remains a paucity of data concerning the behavioral and physiological impacts of biologger attachment and retention. Here, we used animal-borne cameras to characterize the behavior and dive duration of juvenile green turtles () in The Bahamas for up to 210 min after biologger deployment ( = 58). For a "control," we used unoccupied aerial vehicles (UAVs) to collect comparable data from nonhandled green turtles ( = 25) in the same habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!