A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S6 Kinase- and β-TrCP2-Dependent Degradation of p19Arf Is Required for Cell Proliferation. | LitMetric

S6 Kinase- and β-TrCP2-Dependent Degradation of p19Arf Is Required for Cell Proliferation.

Mol Cell Biol

Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan

Published: October 2015

The kinase mTOR (mammalian target of rapamycin) promotes translation as well as cell survival and proliferation under nutrient-rich conditions. Whereas mTOR activates translation through ribosomal protein S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4E-BP), how it facilitates cell proliferation has remained unclear. We have now identified p19(Arf), an inhibitor of cell cycle progression, as a novel substrate of S6K that is targeted to promote cell proliferation. Serum stimulation induced activation of the mTOR-S6K axis and consequent phosphorylation of p19(Arf) at Ser(75). Phosphorylated p19(Arf) was then recognized by the F-box protein β-TrCP2 and degraded by the proteasome. Ablation of β-TrCP2 thus led to the arrest of cell proliferation as a result of the stabilization and accumulation of p19(Arf). The β-TrCP2 paralog β-TrCP1 had no effect on p19(Arf) stability, suggesting that phosphorylated p19(Arf) is a specific substrate of β-TrCP2. Mice deficient in β-TrCP2 manifested accumulation of p19(Arf) in the yolk sac and died in utero. Our results suggest that the mTOR pathway promotes cell proliferation via β-TrCP2-dependent p19(Arf) degradation under nutrient-rich conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573705PMC
http://dx.doi.org/10.1128/MCB.00343-15DOI Listing

Publication Analysis

Top Keywords

cell proliferation
20
p19arf
9
nutrient-rich conditions
8
phosphorylated p19arf
8
accumulation p19arf
8
cell
7
proliferation
6
β-trcp2
5
kinase- β-trcp2-dependent
4
β-trcp2-dependent degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!