Background: Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood.
Methods: In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques.
Results: A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component.
Conclusions: The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524103 | PMC |
http://dx.doi.org/10.1186/s12985-015-0346-9 | DOI Listing |
Front Plant Sci
December 2024
Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
In recent years, the fall armyworm, has rapidly emerged as a global invasive pest, challenging the maize production and leading to considerable economic losses. Developing resistant hybrids is essential for sustainable maize cultivation, which requires a comprehensive understanding of resistance traits and the underlying mechanisms in parental lines. To address this need, the present study aimed to identify the sources of resistance, age and stage-specific effects and role of phytochemicals in plant defense against in thirty diverse maize parental lines [17 female (A) and 13 male (R) lines].
View Article and Find Full Text PDFSci Rep
December 2024
Entomology department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Photosensitizing compounds are eco-friendly promising organic dyes for managing insect pests without facing the risk of resistance. The photodynamic efficacy of four Photosensitizing compounds (rose Bengal, rhodamine B, methylene blue and methyl violet) was monitored against the third larval instar of Spodoptera littoralis (Boisduval), after exposure to sunlight. The LC values of the four compounds; rose Bengal, rhodamine B, methylene blue and methyl violet recorded 0.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia.
The entomopathogenic fungus infects diverse insect host species. We present an annotated draft genome of (Commonwealth Scientific and Industrial Research Organisation [CSIRO] strain M-1000) isolated from a species individual, thereby contributing to future research of as a potential biological control agent.
View Article and Find Full Text PDFNat Prod Res
December 2024
Laboratório de Fitoquímica, Química Medicinal e Metabolômica - LFQMM - Instituto de Química - Universidade Federal de Alfenas - UNIFAL, Alfenas, MG, Brazil.
The fall armyworm is the most prevalent plague in crops associated with a reduction in corn production by up to 34%. Pesticides have been used to reduce this plague, but they cause several environmental problems including resistance, ecological imbalance, and toxicity to the final consumer. The use of plant extracts has been an effective manner of eradicating this plague from crop plantations.
View Article and Find Full Text PDFInsect Sci
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.
Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!