Human pluripotent stem cells (hPSCs) are sensitive to DNA damage and undergo rapid apoptosis compared to their differentiated progeny cells. Here, we explore the underlying mechanisms for the increased apoptotic sensitivity of hPSCs that helps to determine pluripotent stem cell fate. Apoptosis was induced by exposure to actinomycin D, etoposide, or tunicamycin, with each agent triggering a distinct apoptotic pathway. We show that hPSCs are more sensitive to all three types of apoptosis induction than are lineage-non-specific, retinoic-acid-differentiated hPSCs. Also, Bax activation and pro-apoptotic mitochondrial intermembrane space protein release, which are required to initiate the mitochondria-mediated apoptosis pathway, are more rapid in hPSCs than in retinoic-acid-differentiated hPSCs. Surprisingly, Bak and not Bax is essential for actinomycin-D-induced apoptosis in human embryonic stem cells. Finally, P53 is degraded rapidly in an ubiquitin-proteasome-dependent pathway in hPSCs at steady state but quickly accumulates and induces apoptosis when Mdm2 function is impaired. Rapid degradation of P53 ensures the survival of healthy hPSCs but avails these cells for immediate apoptosis upon cellular damage by P53 stabilization. Altogether, we provide an underlying, interconnected molecular mechanism that primes hPSCs for quick clearance by apoptosis to eliminate hPSCs with unrepaired genome alterations and preserves organismal genomic integrity during the early critical stages of human embryonic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733597 | PMC |
http://dx.doi.org/10.1016/j.jmb.2015.07.019 | DOI Listing |
Neurobiol Dis
January 2025
Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, USA.
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
The differentiation of human induced pluripotent stem cells (hiPSCs) into neural progenitor cells (NPCs) is a promising approach for the treatment of neurodegenerative diseases and regenerative medicine. Dual-SMAD inhibition using small molecules has been identified as a key strategy for directing the differentiation of hiPSCs into NPCs by regulating specific cell signaling pathways. However, conventional culture methods are time-consuming and exhibit low differentiation efficiency in neural differentiation.
View Article and Find Full Text PDFSci Rep
January 2025
Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!