Background: Obesity increases the risk for ischaemic stroke and is associated with worse outcome clinically and experimentally. Most experimental studies have used genetic models of obesity. Here, a more clinically relevant model, diet-induced obesity, was used to study the impact of obesity over time on the outcome and inflammatory response after stroke.
Methods: Male C57BL/6 mice were maintained on a high-fat (60% fat) or control (12% fat) diet for 2, 3, 4 and 6 months when experimental stroke was induced by transient occlusion of the middle cerebral artery (MCAo) for either 20 (6-month diet) or 30 min (2-, 3-, 4- and 6-month diet). Ischaemic damage, blood-brain barrier (BBB) integrity, neutrophil number and chemokine expression in the brain were assessed at 24 h. Plasma chemokine levels (at 4 and 24 h) and neutrophil number in the liver (at 24 h) were measured. Physiological parameters (body weight and blood glucose) were measured in naïve control- and high-fat-fed mice at all time points and blood pressure at 3 and 6 months. Blood cell counts were also assessed in naïve 6-month control- and high-fat-fed mice.
Results: Mice fed a high-fat diet for 6 months had greater body weight, blood glucose and white and red blood cell count but no change in systolic blood pressure. After 4 and 6 months of high-fat feeding, and in the latter group with a 30-min (but not 20-min) occlusion of the MCA, obese mice had greater ischaemic brain damage. An increase in blood-brain barrier permeability, chemokine expression (CXCL-1 and CCL3), neutrophil number and microglia/macrophage cells was observed in the brains of 6-month high-fat-fed mice after 30-min MCAo. In response to stroke, chemokine (CXCL-1) expression in the plasma and liver was significantly different in obese mice (6-month high-fat fed), and a greater number of neutrophils were detected in the liver of control but not obese mice.
Conclusions: The detrimental effects of diet-induced obesity on stroke were therefore dependent on the severity of obesity and length of ischaemic challenge. The altered inflammatory response in obese mice may play a key role in its negative impact on stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524371 | PMC |
http://dx.doi.org/10.1186/s12974-015-0359-8 | DOI Listing |
Sci Rep
January 2025
Human Performance Lab, University of Calgary, Calgary, AB, Canada.
Metabolic abnormalities associated with excess adiposity in obesity contribute to many noncommunicable diseases, including sarcopenic obesity. Sarcopenic obesity is the loss of muscle mass coupled with excess fat mass and fatty infiltrations in muscle tissue called myosteatosis. A diet-induced obesity model was developed to study fat infiltration in muscle tissue.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
As global temperatures rise, heat-related chronic health disorders are predicted to become more prevalent. We tested whether a single exposure to acute heat illness, using a preclinical mouse model of exertional heat stroke (EHS), can induce late-emerging health disorders that progress into chronic disease. Following EHS, mice were followed for 3 months; after two weeks of recovery, half were placed on a Western diet to determine if previous EHS exposure amplifies the negative consequences of an atherogenic diet.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.
Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.
Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!