The technique of the power ultrasound was tested in vitro and in vivo in 20 porcine pancreas. Simultaneous temperature measurements and laboratory tests do not produce any restriction. Enzymatic disorders were provable adequate to the clinical course. The ultrasonic effect guarantees a nearly riskless dissection in the layer. Joining processes, by adding Ligament-FIMOMED, produced a waterproof occlusion of parenchymal wounds. The cross-section of the pancreas with the pancreatic duct was sealed sufficiently. Also the jointed pancreato-jejunostomy remained sufficient. The reaction of the pancreatic parenchyma to the power ultrasound was small. A scarred metaplasia evolved immediately at the adhesive as a chronic atrophic interstitial pancreatitis. Only in case of occlusion of the pancreatic duct this alteration comprehended the whole pancreas.
Download full-text PDF |
Source |
---|
Br J Radiol
January 2025
2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Greece.
In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Alpert Medical School of Brown University, Department of Medicine, Division of Cardiology, Rhode Island Hospital.
Cardiac Positron Emission Tomography (PET) is a power- ful imaging tool with diverse applications in the detection and diagnosis of various cardiac conditions, including inflammatory, infectious, and neoplastic processes. Using the radiotracer 18F-fluorodeoxyglucose (18F-FDG), cardiac PET enables the identification of cardiac involvement in diseases such as sarcoidosis and severe infections affecting the heart tissue. Additionally, 18F-FDG PET is valuable in the evaluation of cardiac masses, helping to assess their metabolic activity and potential malignancy.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.
View Article and Find Full Text PDFFront Immunol
January 2025
Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
This pilot study investigates distinctive features within the nail-enthesis complex among Psoriatic arthritis (PsA), Psoriasis (PSO), Rheumatoid Arthrit is (RA), and Healthy Control (HC) groups, utilizing a combined approach of ultrasound (US) and nailfold videocapillaroscopy (NVC). Clinical assessments and comprehensive US and NVC evaluations of the nail-enthesis complex were conducted on 72 subjects (18 PsA, 16 PSO, 19 RA, 19 HC). Unsupervised clustering models and factor analysis were employed to identify patterns and interrelationships between US and NVC parameters.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Radiology, College of Medicine, University of Florida, Gainesville, FL.
Purpose: The purpose of this work was to evaluate the image quality of a commercial CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO).
Methods: CT number, noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectrum (NPS) were assessed using the ACR CT Accreditation phantom scanned with various acquisitions at 80 kV, 100 kV, 120 kV, and 135 kV, each with multiple CTDIvol values of 20 mGy, 40 mGy, and 65 mGy. Artifacts were evaluated in an anthropomorphic head phantom, a cadaver head, and in patient studies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!