The high mobility group box 1 (HMGB1), which is a highly conserved and evolutionarily non-histone nuclear protein, has been shown to associate with a variety of biological important processes, such as transcription, DNA repair, differentiation, and extracellular signalling. High HMGB1 expression has been reported in many cancers, such as prostate, kidney, ovarian, and gastric cancer. However, there have been few studies of the function of HMGB1 in the malignant biological behaviour of bladder urothelial carcinoma (BUC), and the potential mechanism of HMGB1 in the pathogenesis of BUC remains unclear. Thus, in this study, we constructed plasmid vectors that are capable of synthesizing specific shRNAs targeting HMGB1 and transfected them into BUC cells to persistently suppress the endogenous gene expression of HMGB1. The expression of HMGB1, the bioactivity of BUC cells, including proliferation, apoptosis, cell cycle distribution, migration and invasion, and the effects of HMGB1 knockdown on downstream signalling pathways were investigated. Our data suggest that HMGB1 promotes the malignant biological behaviour of BUC, and that this effect may be partially mediated by the NF-κB signalling pathway. HMGB1 may serve as a potential therapeutic target for BUC in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523846 | PMC |
http://dx.doi.org/10.1038/srep12807 | DOI Listing |
Front Immunol
January 2025
Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.
View Article and Find Full Text PDFLab Invest
January 2025
Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province; Shijiazhuang 050017, China. Electronic address:
Exosomes play a role in cell communication by transporting content between cells. Here, we tested whether renal podocyte-derived exosomes affect the injury of glomerular endothelial cells in lupus nephritis (LN). We found that exosomes containing high levels of high mobility group box 1 (HMGB1) were released from podocytes in patients with LN, BALB/c mice injected with pristane (which induces lupus-like disease in mice), and cultured human renal glomerular endothelial cells (HRGECs) treated with LN plasma.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFHeliyon
January 2025
Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Background: () is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in infection.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!