Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells.

Nat Immunol

1] Department of Genetics, Stanford University, School of Medicine, California, USA. [2] Stanford Genome Technology Center, Stanford University, California, USA. [3] European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

Published: September 2015

Expression of tissue-restricted self antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for the induction of self-tolerance and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and is coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA sequencing and obtained evidence of numerous recurring TRA-co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process that might involve local remodeling of chromatin and thus ensures a comprehensive representation of the immunological self.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675844PMC
http://dx.doi.org/10.1038/ni.3246DOI Listing

Publication Analysis

Top Keywords

medullary thymic
8
thymic epithelial
8
epithelial cells
8
mtecs coordinated
8
mtecs
5
single-cell transcriptome
4
transcriptome analysis
4
analysis reveals
4
reveals coordinated
4
coordinated ectopic
4

Similar Publications

Medullary thymic epithelial cells (mTECs) play a crucial role in suppressing the onset of autoimmunity by eliminating autoreactive T cells and promoting the development of regulatory T cells in the thymus. Although mTECs undergo turnover in adults, the molecular mechanisms behind this process remain unclear. This study describes the direct and indirect roles of receptor activator of NF-κB (RANK) and CD40 signaling in TECs in the adult thymus.

View Article and Find Full Text PDF

T cell immune tolerance is established in part through the activity of the Auto-immune Regulator (AIRE) transcription factor in the medullary Thymic Epithelial Cells (mTEC) of the thymus. AIRE induces expression of SELF peripheral tissue-specific antigens for presentation to naïve T cells to promote activation/deletion of potentially autoreactive T cells. We show, for the first time to our knowledge, that tumors mimic the role of AIRE in mTEC to evade immune rejection.

View Article and Find Full Text PDF

T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.

View Article and Find Full Text PDF

HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation.

View Article and Find Full Text PDF

Purpose: Histone deacetylase (HDAC) inhibition downregulates hypoxia-inducible factor-1α and modulates multiple metabolomic pathways relevant in cancer. Here we report a potential novel biomarker to predict exceptional responders (>3 years) in patients receiving HDAC and vascular endothelial growth factor (VEGF) inhibition.

Patients And Methods: Patients with solid tumor malignancies were enrolled in this phase Ib trial of abexinostat (4/7 ×21 days) and pazopanib (28/28 days), with a dose expansion in renal cell carcinoma (RCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!