Channelrhodopsins (ChR) are light-gated ion channels of green algae that are widely used to probe the function of neuronal cells with light. Most ChRs show a substantial reduction in photocurrents during illumination, a process named "light adaptation". The main objective of this spectroscopic study was to elucidate the molecular processes associated with light-dark adaptation. Here we show by liquid and solid-state nuclear magnetic resonance spectroscopy that the retinal chromophore of fully dark-adapted ChR is exclusively in an all-trans configuration. Resonance Raman (RR) spectroscopy, however, revealed that already low light intensities establish a photostationary equilibrium between all-trans,15-anti and 13-cis,15-syn configurations at a ratio of 3:1. The underlying photoreactions involve simultaneous isomerization of the C(13)═C(14) and C(15)═N bonds. Both isomers of this DAapp state may run through photoinduced reaction cycles initiated by photoisomerization of only the C(13)═C(14) bond. RR spectroscopic experiments further demonstrated that photoinduced conversion of the apparent dark-adapted (DAapp) state to the photocycle intermediates P500 and P390 is distinctly more efficient for the all-trans isomer than for the 13-cis isomer, possibly because of different chromophore-water interactions. Our data demonstrating two complementary photocycles of the DAapp isomers are fully consistent with the existence of two conducting states that vary in quantitative relation during light-dark adaptation, as suggested previously by electrical measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.5b00597 | DOI Listing |
Behav Brain Res
December 2024
Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands. Electronic address:
Modelling delay discounting behavior in rodents is important for understanding the neurobiological mechanisms underlying cognitive control and associated impulsivity disorders. Conventional rodent delay discounting procedures require extensive training and frequent experimenter interaction, as rodents are tested in separate operant chambers away from their home cage. To address these limitations, we adapted and characterize here a self-adjusting delay discounting procedure to an automated CombiCage setup.
View Article and Find Full Text PDFCurr Mol Med
December 2024
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), School of Agriculture and Food Sustainability (AGFS), University of Queensland, Gatton, QLD 4343, Australia.
and are among the most problematic broadleaf weeds in eastern cropping systems of Australia. This study investigated the seed germination ecology of and . The study hypothesized that may have greater ecological advantages under adverse environmental conditions compared to .
View Article and Find Full Text PDFLight/dark (LD) cycles are responsible for oscillations in gene expression, which modulate several aspects of plant physiology. Those oscillations can persist under constant conditions due to regulation by the circadian oscillator. The response of the transcriptome to light regimes is dynamic and allows plants to adapt rapidly to changing environmental conditions.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
The adaptation to the daily 24-h light-dark cycle is ubiquitous across animal species and is crucial for maintaining fitness. This free-running cycle occurs innately within multiple bodily systems, such as endogenous circadian rhythms in clock-gene expression and synaptic plasticity. These phenomena are well studied; however, it is unknown if and how the 24-h clock affects electrophysiologic network function in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!