Osmium Bisterpyridine Complexes with Redox-Active Amine Substituents: A Comparison Study with Ruthenium Analogues.

Inorg Chem

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Published: August 2015

Five osmium complexes with redox-active amine substituents, [Os(ttpy)(Ntpy)](PF6)2 (1(PF6)2), [Os(Ntpy)2](PF6)2 (2(PF6)2), [Os(ttpy)(NPhtpy)](PF6)2 (3(PF6)2), [Os(Ntpy)(NPhtpy)](PF6)2 (4(PF6)2), and [Os(NPhtpy)2](PF6)2 (5(PF6)2), have been prepared, where ttpy is 4'-tolyl-2,2':6',2″-terpyridine, Ntpy is 4'-(di-p-anisylamino)-2,2':6',2″-terpyridine, and NPhtpy is 4'-(di-p-anisylaminophen-4-yl)-2,2':6',2″-terpyridine. X-ray crystallographic data of 2(PF6)2 and 4(PF6)2 are presented. These complexes show rich visible absorptions attributed to the singlet metal-to-ligand charge-transfer ((1)MLCT), triplet MLCT, and intraligand charge-transfer transitions. Complexes 3(PF6)2 and 5(PF6)2 show weak emissions around 720 nm at room temperature. All complexes show stepwise oxidations of the osmium ion and the amine segment. However, the redox potentials and the order of the Os(III/II) and N(•+/0) processes vary significantly, depending on the electronic nature of the amine substituents. In the singly oxidized state, either Os(II) → N(•+) MLCT or N → Os(III) ligand-to-metal charge-transfer transitions in the near-infrared region have been observed. For complexes 2(PF6)2, 4(PF6)2, and 5(PF6)2 with two amine substituents, no evidence has been observed for the presence of osmium-mediated amine-amine electronic coupling. Density functional theory (DFT) and time-dependent DFT calculations have been performed to complement these experimental results. The one-electron-oxidized forms 3(3+) and 5(3+) show distinct electron paramagnetic resonance (EPR) signals in CH3CN at room temperature. However, complexes 1(3+), 2(3+), and 4(3+) are EPR silent under similar conditions. In addition, a comparison study has been made between these osmium complexes and the previously reported ruthenium analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b01420DOI Listing

Publication Analysis

Top Keywords

amine substituents
16
complexes
8
complexes redox-active
8
redox-active amine
8
comparison study
8
ruthenium analogues
8
osmium complexes
8
2pf62 4pf62
8
charge-transfer transitions
8
room temperature
8

Similar Publications

Enhancement of detoxification of xenobiotic aromatic amine dyes by N-acetyltransferase 1 (NAT1) enzyme on human keratinocytes cells through structural modification.

Environ Toxicol Pharmacol

December 2024

Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore 117544. Electronic address:

The metabolic conversion of aromatic amines to N-acetylated forms in skin and keratinocytes depends on N-acetyltransferase-1 (NAT1). Common hair color ingredient such as para-phenylenediamine (PPD) causes allergic contact dermatitis. We explored how different electronic substituents on PPD aided NAT1 enzyme biotransform oxidative arylamine (AA) compounds G1-G13 by N-acetylation, NAT-1 activity assays, metabolism, and in vitro clearance investigations in human keratinocytes, while identifying NAT-1 protein levels by Western blot and qRT-PCR.

View Article and Find Full Text PDF

Reductive Zincke Reaction: Opening of Pyridinium Rings to δ-Amino Ketones via Transfer Hydrogenation.

Chemistry

December 2024

University of Liverpool, Department of Chemistry, Oxford Street, L69 7ZD, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The Zincke reaction and Birch reduction have been one of the few reactions that allow for ring opening of pyridines ever since the discovery of pyridine more than a century ago. This paper presents a new addition to the list of pyridine ring-opening reactions, reductive Zincke reaction, which affords saturated δ-amino ketones. Under the catalysis of a simple rhodium complex, pyridinium salts with diverse substituents are reduced with formic acid, ring-opened with water, transaminated with a secondary amine and further reduced to afford a wide range of δ-amino ketones, including those in which the alkane chain of the ketones is selectively deuterated or fluorinated.

View Article and Find Full Text PDF

Cross-Dehydrogenative Coupling of Secondary Amines with Silanes Catalyzed by Agostic Iridium-NSi Species.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain.

An active catalytic system for the cross-dehydrogenative coupling (CDC) of a wide range of secondary amines with silanes is reported. The iridium(III) derivatives [Ir(H)(X)(κ-NSi)(L)] (NSi = {4,8-dimethylquinoline-2-yloxy}dimethylsilyl; L = coe, X = Cl, ; L = coe, X = OTf, ; L = PCy, X = Cl, ; L = PCy X = OTf, ), which are stabilized by a weak yet noticeable Ir···H-C agostic interaction between the iridium and one of the C-H bonds of the 8-Me substituent of the NSi ligand, have been prepared and fully characterized. These species have proven to be effective catalysts for the CDC of secondary amines with hydrosilanes.

View Article and Find Full Text PDF

Breaking the Myth of Enzymatic Azoreduction.

ACS Chem Biol

December 2024

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown.

View Article and Find Full Text PDF

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!