The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b04108 | DOI Listing |
Adv Mater
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Small
January 2025
School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510006, P. R. China.
In situ polymerization of cyclic ethers is a promising strategy to construct solid-state lithium (Li) metal batteries with high energy density and safety. However, their practical applications are plagued by the unsatisfactory electrochemical properties of polymer electrolytes and the unstable solid electrolyte interphase (SEI). Herein, organic perfluorodecanoic acid (PFDA) is proposed as a new initiator to polymerize 1,3-dioxolane electrolyte (PDOL), which enables the as-obtained PDOL electrolyte to deliver greatly enhanced ionic conductivity and broadened electrochemical window.
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi University, School of Resource, Environments and Materials, CHINA.
Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li+ kinetics of Li+ plating/stripping.
View Article and Find Full Text PDFSmall
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China.
Lithium metal anode (LMA) is expected to be the ideal anode material for future high-energy-density batteries, but regulating the complex electrolyte-anode interface remains a challenge. In this work, a stable LiTe coating is formed on the surface of commercial copper mesh (LTCM) using a simple and quick method to improve lithium metal anode interfacial kinetics. LiTe possesses a strong affinity for both Li and TFSI anions, which reduces the lithium nucleation barrier and guides the formation of inorganic-rich SEI, accelerates the diffusion of Li, and promotes the growth of lithium metal along the plane.
View Article and Find Full Text PDFACS Nano
December 2024
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
Ultraflexible neural electrodes have shown superior stability compared with rigid electrodes in long-term recordings, owing to their low mechanical mismatch with brain tissue. It is desirable to detect neurotransmitters as well as electrophysiological signals for months in brain science. This work proposes a stable electronic interface that can simultaneously detect neural electrical activity and dopamine concentration deep in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!