Variation in resource supply can cause variation in temperature dependences of metabolic processes (e.g., photosynthesis and respiration). Understanding such divergence is particularly important when using metabolic theory to predict ecosystem responses to climate warming. Few studies, however, have assessed the effect of temperature-resource interactions on metabolic processes, particularly in cases where the supply of limiting resources exhibits temperature dependence. We investigated the responses of biomass accrual, gross primary production (GPP), community respiration (CR), and N2 fixation to warming during biofilm development in a streamside channel experiment. Areal rates of GPP, CR, biomass accrual, and N2 fixation scaled positively with temperature, showing a 32- to 71-fold range across the temperature gradient (approximately 7 degrees-24 degrees C). Areal N2-fixation rates exhibited apparent activation energies (1.5-2.0 eV; 1 eV = approximately 1.6 x 10(-19) J) approximating the activation energy of the nitrogenase reaction. In contrast, mean apparent activation energies for areal rates of GPP (2.1-2.2 eV) and CR (1.6-1.9 eV) were 6.5- and 2.7-fold higher than estimates based on metabolic theory predictions (i.e., 0.32 and 0.65 eV, respectively) and did not significantly differ from the apparent activation energy observed for N2 fixation. Mass-specific activation energies for N2 fixation (1.4-1.6 eV), GPP (0.3-0.5 eV), and CR (no observed temperature relationship) were near or lower than theoretical predictions. We attribute the divergence of areal activation energies from those predicted by metabolic theory to increases in N2 fixation with temperature, leading to amplified temperature dependences of biomass accrual and areal rates of GPP and R. Such interactions between temperature dependences must be incorporated into metabolic models to improve predictions of ecosystem responses to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/14-1667.1 | DOI Listing |
Sci Rep
December 2024
Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
Accurate characterisation of seismic source mechanisms in mining environments is crucial for effective hazard mitigation, but it is complicated by the presence of anisotropic geological conditions. Neglecting anisotropic effects during moment tensor (MT) inversion introduces significant distortions in the retrieved source characteristics. In this study, we investigated the impact of ignoring anisotropy during MT inversion on the reliability of hazard assessment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Sakarya University, Sakarya, Turkey.
Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electric Engineering, Naval University of Engineering, Wuhan, 430033, China.
To address the challenges related to active power dissipation and node voltage fluctuation in the practical transformation of power grids in the field of new energy such as wind and photovoltaic power generation, an improved Dung Beetle Optimization Algorithm Based on a Hybrid Strategy of Levy Flight and Differential Evolution (LDEDBO) is proposed. This paper systematically addresses this issue from three aspects: firstly, optimizing the DBO algorithm using Chebyshev chaotic mapping, Levy flight strategy, and differential evolution algorithm; secondly, validating the algorithm's feasibility through real-time network reconfiguration at random time points within a 24-h period; and finally, applying the LDEDBO to address the dynamic reconfiguration problems of the IEEE-33 and IEEE-69 node bus. The simulation indicates that the power dissipation of the IEEE-33 node bus is decreased by 28.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!