It is generally assumed that, when natural habitat is converted to human-dominated land cover, such habitat is lost to its native species. Most literature assumes that species richness should vary as a function of remaining natural area, following the well-known species-area relationship (i.e., classic SAR). However, classic SARs have consistently overestimated species losses resulting from conversion of natural forested land cover to human-dominated landscapes. Moreover, richness is sometimes a peaked function of remaining natural habitat. Recent studies propose modified SAR models based on species' utilization of multiple habitat types, yet none fully explain a peaked species-area relationship. Here, we evaluate the responses of total avian richness, forest bird richness, and open-habitat bird richness to remaining natural land cover within 991 quadrats, each 100 km2, across southern Ontario, Canada. Total bird species richness peaks at roughly 50% natural land cover. Richness of forest birds varies as a classic power function of forested area. In contrast, richness of birds that prefer open habitats does not increase monotonically with either natural- or human-dominated land cover. Richness of open-habitat species can be predicted when we partition human-dominated land cover into an "available human-dominated" component and "lost" habitat. Disiinguishing three land-cover types (natural, available human-dominated, and lost) can thus permit accurate predictions of species richness in landscapes with differing levels of natural habitat conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/13-2362.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!