TRO40303 is cytoprotective compound that was shown to reduce infarct size in preclinical models of myocardial infarction. It targets mitochondria, delays mitochondrial permeability transition pore (mPTP) opening and reduces oxidative stress in cardiomyocytes submitted to ischemia/reperfusion in vitro. Because the involvement of the mitochondria and the mPTP has been demonstrated in chronic as well as acute hepatitis, we investigated the potential of TRO40303 to prevent hepatocyte injury. A first set of in vitro studies showed that TRO40303 (from 0.3 to 3 μmol/L) protected HepG2 cells and primary mouse embryonic hepatocytes (PMEH) from palmitate intoxication, a model mimicking steatohepatitis. In PMEH, TRO40303 provided similar protection against cell death due to Jo2 anti-Fas antibody intoxication. Further studies were then preformed in a mouse model of Fas-induced fulminant hepatitis induced by injecting Jo2 anti-Fas antibody. When mice received a sublethal dose of Jo2 at 125 μg/kg, TRO40303 pretreatment prevented liver enzyme elevation in plasma in parallel with a decrease in cytochrome C release from mitochondria and caspase 3 and 7 activation in hepatic tissue. When higher, lethal doses of Jo2 were administered, TRO40303 (10 and 30 mg/kg) significantly reduced mortality by 65-90% when administered intraperitoneally (i.p.) 1 h before Jo2 injection, a time when TRO40303 plasma concentrations reached their peak. TRO40303 (30 mg/kg, i.p.) was also able to reduce mortality by 30-50% when administered 1 h postlethal Jo2 intoxication. These results suggest that TRO40303 could be a promising new therapy for the treatment or prevention of hepatitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492760PMC
http://dx.doi.org/10.1002/prp2.144DOI Listing

Publication Analysis

Top Keywords

tro40303
10
cytoprotective compound
8
jo2 anti-fas
8
anti-fas antibody
8
tro40303 30 mg/kg
8
jo2
6
tro40303 mitochondrial-targeted
4
mitochondrial-targeted cytoprotective
4
compound protection
4
hepatitis
4

Similar Publications

It is now firmly established that an important event in the formation of reperfusion injury of the heart is the opening of mitochondrial permeability transition pores (mPTPs), which changes the permeability of the mitochondria. mPTP opening results in the death of cardiomyocytes through activation of apoptosis and necroptosis. Experimental studies have shown that pharmacological inhibition of mPTP opening promotes the reduction in the infarct size and the suppression of apoptosis.

View Article and Find Full Text PDF

Objectives: Mitochondrial permeability transition pore inhibition is a promising approach to treat acute pancreatitis (AP). We sought to determine (i) the effects of the mitochondrial permeability transition pore inhibitor 3,5-seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) on murine and human pancreatic acinar cell (PAC) injury induced by fatty acid ethyl esters (FAEEs) or taurolithocholic acid-3-sulfate and (ii) TRO40303 pharmacokinetics and efficacy in experimental alcoholic AP (FAEE-AP).

Methods: Changes in mitochondrial membrane potential (Δψm), cytosolic Ca ([Ca]c), and cell fate were examined in freshly isolated murine or human PACs by confocal microscopy.

View Article and Find Full Text PDF

Objectives: In the MITOCARE study, reperfusion injury was not prevented after administration of the mitochondrial permeability transition pore (mPTP) opening inhibitor, TRO40303, in patients with ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI). The effects of TRO40303 on pro-inflammatory cytokines and acute-phase proteins were assessed.

Methods: STEMI patients (n = 163, mean age 62 years) with chest pain within 6 h before admission for pPCI were randomized to intravenous bolus of TRO40303 (n = 83) or placebo (n = 80) prior to reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!