We review the state-of-the art in dynamics calculations on the reactive scattering of H2 from metal surfaces, which is an important model system of an elementary reaction that is relevant to heterogeneous catalysis. In many applications, quantum dynamics and classical trajectory calculations are performed within the Born-Oppenheimer static surface model. However, ab initio molecular dynamics (AIMD) is finding increased use in applications aimed at modeling the effect of surface phonons on the dynamics. Molecular dynamics with electronic friction has been used to model the effect of electron-hole pair excitation. Most applications are still based on potential energy surfaces (PESs) or forces computed with density functional theory (DFT), using a density functional within the generalized gradient approximation to the exchange-correlation energy. A new development is the use of a semi-empirical version of DFT (the specific reaction parameter (SRP) approach to DFT). We also discuss the accurate methods that have become available to represent electronic structure data for the molecule-surface interaction in global PESs. It has now become possible to describe highly activated H2 + metal surface reactions with chemical accuracy using the SRP-DFT approach, as has been shown for H2 + Cu(111) and Cu(100). However, chemical accuracy with SRP-DFT has yet to be demonstrated for weakly activated systems like H2 + Ru(0001) and non-activated systems like H2 + Pd(111), for which SRP DFs are not yet available. There is now considerable evidence that electron-hole pair (ehp) excitation does not need to be modeled to achieve the (chemically) accurate calculation of dissociative chemisorption and scattering probabilities. Dynamics calculations show that phonons can be safely neglected in the chemically accurate calculation of sticking probabilities on cold metal surfaces for activated systems, and in the calculation of a number of other observables. However, there is now sufficient evidence to suggest that the decision on whether or not to neglect phonons should be taken with care, with appropriate consideration of the observable to be computed and of the relevant surface temperature. AIMD calculations have provided valuable insights into the mechanisms that are operative in the dissociative adsorption and absorption of hydrogen on/in precovered metal surfaces. Classical and quantum dynamics calculations have shown that the reaction probability of H2 on Pt surfaces consisting of (100) steps and (111) terraces can to a very good approximation be computed as a weighted average of the reactivities on the steps and terraces. Progress obtained with dynamics calculations on the scattering of H2 from alloys and from simple low index metal surfaces is also reported. Insights that may be obtained on the reactivity of a metal surface from the prominent presence of out-of-plane diffraction or, conversely, the complete absence of diffraction, are discussed. A new field has been opened up by experiments on H2 scattering from surfaces at fast grazing incidence, and we discuss new predictions regarding diffraction and dissociative scattering of H2 under such conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cs00336a | DOI Listing |
J Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States.
The bulk phase of transition metal nitrides (TMNs) has long been a subject of extensive investigation due to their utility as coating materials, electrocatalysts, and diffusion barriers, attributed to their high conductivity and refractory properties. Downscaling TMNs into two-dimensional (2D) forms would provide valuable members to the existing 2D materials repertoire, with potential enhancements across various applications. Moreover, calculations have anticipated the emergence of uncommon physical phenomena in TMNs at the 2D limit.
View Article and Find Full Text PDFJ Forensic Sci
January 2025
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil.
Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Government First Grade College Chamarajanagar (Affiliated to Chamarajanagar University), Chamarajanagar, Karnataka, India.
Metal-Organic Frameworks (MOFs) gaining increasing interest in heterogeneous catalysis owing to their advantageous properties such as superior porosity, high surface area, ample catalytic sites. Their properties can be tailored by varying the metal ions or metal clusters (nodes) and organic linkers. Magnetically active nano core-shell MOF composites are also discovered for easy separation and reuse of catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!