A de novo protein named as EAF (Escherichia antifungal protein) from the cytoplasmic pool of an Escherichia coli strain (MTCC 1652), has been purified to homogeneity using anion exchange (Q-XL Sepharose) and cation exchange (SP-Sepharose) chromatography. The MIC (minimum inhibitory concentration) values of purified protein against A. fumigatus (the major pathogenic species) were found to be comparable with standard drugs i.e. 3.90 µg/ml, 3.90 µg/ml and 1.25 µg/disc via microbroth dilution assay (MDA), percentage spore germination inhibition (PSGI) and disc diffusion assay (DDA) respectively. Toxicity results confirmed that it causes no haemolysis against human RBCs upto a concentration of 1000.0 µg/ml as compared to Amphotericin B (conventional antifungal drug) that causes hundred percent haemolysis at a concentration of 37.50 µg/ml only.The purified protein demonstrated a molecular mass of 28 kDa on SDS-PAGE which was further authenticated by MALDI-TOF. Proteomic and bioinformatics studies deciphered its significant homology (72 %) with chain A-D-ribose binding protein (cluster 2 sugar binding periplasmic proteins; sequence homologues of transcription regulatory proteins) from E. coli. Single dimensional page analysis of A. fumigatusproteins with due effect of EAF (at MIC50) revealed the inhibition of two major proteins; a heat shock protein 70-Hsp70 (68 kDa); having role in protein folding and functioning andphenylanalyl-t RNA synthetase PodG subunit protein (74 kDa); involved in growth polarity in fungi. Scanning electron microscopic studies depicted homologous results. We suggest that EAF most likely belongs to a new group of proteins with potent antifungal characteristics, negligible toxicity and targeting vital proteins of fungal metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866522666150803152655 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!