Rheb signaling and tumorigenesis: mTORC1 and new horizons.

Int J Cancer

Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile.

Published: April 2016

Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1-independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.29707DOI Listing

Publication Analysis

Top Keywords

rheb functions
12
cell growth
8
proliferative disorders
8
will review
8
rheb
7
cancer
5
rheb signaling
4
signaling tumorigenesis
4
mtorc1
4
tumorigenesis mtorc1
4

Similar Publications

Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding.

J Biol Chem

December 2024

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan. Electronic address:

The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca) concentration modulates the mTORC1 pathway via binding of the Ca sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca/CaM modulates mTORC1 activity remains unclear.

View Article and Find Full Text PDF

The Cullin3-Rbx1-KLHL9 E3 ubiquitin ligase complex ubiquitinates Rheb and supports amino acid-induced mTORC1 activation.

Cell Rep

December 2024

Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 E. Catherine Streett, Ann Arbor, MI 48109-5622, USA; Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5368, USA. Electronic address:

Mechanistic target of rapamycin complex 1 (mTORC1) is recruited to the lysosomal membrane by the active Rag heterodimer, where mTORC1 interacts with active Rheb for its activation. It has been shown that polyubiquitination of Rheb is crucial for enhancing its interaction with mTORC1 on the lysosome. However, the specific ubiquitin ligases for Rheb, which promotes mTORC1 activation, remain elusive.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma is one of the deadliest forms of cancer with no effective therapeutic options. A KRAS mutation can be found in up to 90% of all pancreatic tumors, making it a promising therapeutic target. The introduction of new KRAS inhibitors has been a milestone in the history of KRAS mutant tumors; however, therapeutic resistance limits their efficacy.

View Article and Find Full Text PDF

Lesional focal epilepsy (LFE) is a common and severe seizure disorder caused by epileptogenic lesions, including malformations of cortical development (MCD) and low-grade epilepsy-associated tumors (LEAT). Understanding the genetic etiology of these lesions can inform medical and surgical treatment. We conducted a somatic variant enrichment mega-analysis in brain tissue from 1386 individuals who underwent epilepsy surgery, including 599 previously unpublished individuals with ultra-deep ( > 1600x) targeted panel sequencing.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an advancing neurodegenerative disorder distinguished by the formation of amyloid plaques and neurofibrillary tangles in the human brain. Nevertheless, the lack of peripheral biomarkers that can detect the development of AD remains a significant limitation.

Objective: The main aim of this work was to discover the molecular markers associated with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!