Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.21844DOI Listing

Publication Analysis

Top Keywords

chemotherapeutic-induced neuropathy
12
sig-1r agonist
12
sig-1r
9
sigma-1 receptor
8
receptor chaperone
8
chemotherapeutic-induced neuropathic
8
neuropathic pain
8
previous studies
8
oxaliplatin paclitaxel
8
examining effects
8

Similar Publications

Neuronal and non-neuronal TRPA1 as therapeutic targets for pain and headache relief.

Temperature (Austin)

May 2022

Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.

The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, has a major role in different types of pain. TRPA1 is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammation.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of cancer treatment which involves sensory and motor nerve dysfunction. Severe CIPN has been reported in around 5% of patients treated with single and up to 38% of patients treated with multiple chemotherapeutic agents. Present medications available for CIPN are the use of opioids, nonsteroidal anti-inflammatory agents, and tricyclic antidepressants, which are only marginally effective in treating neuropathic symptoms.

View Article and Find Full Text PDF

The mu opioid receptor-selective agonist, SR-17018, preferentially activates GTPγS binding over βarrestin2 recruitment in cellular assays, thereby demonstrating signaling bias. In mice, SR-17018 stimulates GTPγS binding in brainstem and produces antinociception with potencies similar to morphine. However, it produces much less respiratory suppression and mice do not develop antinociceptive tolerance in the hot plate assay upon repeated dosing.

View Article and Find Full Text PDF

Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4.

BMC Biol

December 2020

Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.

Background: The mechanism underlying the pain symptoms associated with chemotherapeutic-induced peripheral neuropathy (CIPN) is poorly understood. Transient receptor potential ankyrin 1 (TRPA1), TRP vanilloid 4 (TRPV4), TRPV1, and oxidative stress have been implicated in several rodent models of CIPN-evoked allodynia. Thalidomide causes a painful CIPN in patients via an unknown mechanism.

View Article and Find Full Text PDF

Unlabelled: Neuropathic pain is a complex and debilitating syndrome for which there are few effective pharmacological treatments. Opioid-based medications are initially effective for acute pain, but tolerance to their analgesic effects quickly develops, and long-term use often leads to physical dependence and addiction. Furthermore, neuropathic pain is generally resistant to non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!