A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chlorobaculum tepidum growth on biogenic S(0) as the sole photosynthetic electron donor. | LitMetric

The green sulfur bacteria, the Chlorobi, are phototrophic bacteria that oxidize sulfide and deposit extracellular elemental sulfur globules [S(0)]. These are subsequently consumed after sulfide is exhausted. S(0) globules from a Chlorobaculum tepidum mutant strain were purified and used to show that the wild-type strain of Cba. tepidum can grow on biogenic S(0) globules as the sole photosynthetic electron donor, i.e. in medium with no other source of reducing power. Growth yields and rates on biogenic S(0) are comparable with those previously determined for Cba. tepidum grown on sulfide as the sole electron donor. Contact between cells and S(0) was required for growth. However, only a fraction of the cell population was firmly attached to S(0) globules. Microscopic examination of cultures growing on S(0) demonstrated cell-S(0) attachment and allowed for the direct observation of S(0) globule degradation. Bulk chemical analysis, scanning electron microscopy, secondary ion mass spectrometry and SDS-PAGE indicate that Cba. tepidum biogenic S(0) globules contain carbon, oxygen and nitrogen besides S and may be associated with specific proteins. These observations suggest that current models of S(0) oxidation in the Chlorobi need to be revised to take into account the role of cell-S(0) interactions in promoting S(0) degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12995DOI Listing

Publication Analysis

Top Keywords

electron donor
12
chlorobaculum tepidum
8
sole photosynthetic
8
photosynthetic electron
8
biogenic globules
8
globules
5
tepidum growth
4
biogenic
4
growth biogenic
4
biogenic sole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!