Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of Oxone and a palladium(II) catalyst enables the efficient allylic CH oxidation of sterically hindered α-quaternary lactams which are unreactive under known conditions for similar transformations. This simple, safe, and effective system for CH activation allows for unusual tunable selectivity between a two-electron oxidation to the allylic acetates and a four-electron oxidation to the corresponding enals, with the dominant product depending on the presence or absence of water. The versatile synthetic utility of both the allylic acetate and enal products accessible through this methodology is also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201504007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!