Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.

Biophys Chem

Department of Late Stage Pharmaceutical Development, Genentech Inc. (member of Roche), South San Francisco, CA 94080, USA.

Published: December 2015

Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2015.07.004DOI Listing

Publication Analysis

Top Keywords

charge variants
12
human growth
8
growth hormone
8
free energy
8
energy interaction
8
variants
7
protein
5
modeling protein-anion
4
protein-anion exchange
4
exchange resin
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

Integrating multi-layered biological priors to improve genomic prediction accuracy in beef cattle.

Biol Direct

December 2024

Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.

Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility.

Sci Rep

December 2024

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

Mechanistic modeling of anti-Langmuirian to Langmuirian behavior of Fc-fusion proteins in cation exchange chromatography.

J Chromatogr A

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address:

Development of a next-generation chromatographic model, capable of simultaneously meeting academic demands for thermodynamic consistency and industrial requirements in everyday project work, has become a focal point of research. In this study, anti-Langmuirian to Langmuirian (AL-L) elution behavior was observed in cation-exchange chromatographic separation of charge variants of industrial Fc-fusion proteins. To characterize this behavior, the multi-protein Mollerup activity model was integrated into the steric mass action (SMA) model, resulting in a new model named the generalized ion-exchange (nGIEX) isotherm for multi-protein systems.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!