We evaluated the metabolism of several herbicides and progesterone by two P450 proteins (CYP1A9 and CYP1C1) from Japanese eel (Anguilla japonica). Expression vectors harboring CYP1A9 and CYP1C1 sequences were introduced into Escherichia coli. E. coli membrane fractions were incubated with each substrate, and the metabolites were analyzed. CYP1A9 and CYP1C1 deethylated 7-ethoxycoumarin and phenacetin, and demethylated chlorotoluron, diuron, and linuron. CYP1C1 specifically hydroxlyated progesterone at the 6β and 16α positions. Five amino acids of CYP1A9 related to substrate binding were selected for mutation analyses [CYP1A9(F128A), CYP1A9(F229A), CYP1A9(F263A), CYP1A9(V387A), and CYP1A9(I391A)]. Two variants, CYP1A9(F229A) and CYP1A9(F128A), changed the ratio of 16α hydroxyprogesterone to 6β hydroxyprogesterone. Among all the variants, CYP1A9(F263A) showed the highest activity towards substrates used. CYP1A9(V387A) and CYP1A9(I391A) showed higher activities than that of CYP1A9 toward progesterone. The substrate specificity of CYP1A9 may be altered by replacing an amino acid related to substrate binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2015.07.006 | DOI Listing |
Environ Toxicol Pharmacol
September 2015
Laboratory of Marine Biotechnology, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
We evaluated the metabolism of several herbicides and progesterone by two P450 proteins (CYP1A9 and CYP1C1) from Japanese eel (Anguilla japonica). Expression vectors harboring CYP1A9 and CYP1C1 sequences were introduced into Escherichia coli. E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!