Fast and sensitive method for detecting volatile species in liquids.

Rev Sci Instrum

Department of Physics, Technical University of Denmark, Fysikvej, Building 312, DK-2800 Kgs. Lyngby, Denmark.

Published: July 2015

This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1% of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4923453DOI Listing

Publication Analysis

Top Keywords

volatile species
12
species liquids
8
mass spectrometry
8
polycrystalline platinum
8
platinum thin
8
thin film
8
fast sensitive
4
sensitive method
4
method detecting
4
detecting volatile
4

Similar Publications

In situ remediation of oil-contaminated soils by ozonation: Experimental study and numerical modeling.

Chemosphere

January 2025

Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:

The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.

View Article and Find Full Text PDF

Shared Pheromone Compounds in Neotropical Rice Stink Bugs: The Role of Zingiberenol and Sesquipiperitol.

J Chem Ecol

January 2025

Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Semioquímicos, Brasília, DF, 70297-400, Brazil.

The small black stem bug, Paratibraca (= Glyphepomis) spinosa (Campos and Grazia 1998), is a rice pest in Brazil and is part of a complex of stink bugs that includes Oebalus poecilus (Dallas) and Tibraca limbativentris Stål. Together, these pentatomid species pose a serious threat to rice crops throughout South America. In this study, we identified the sex pheromone of P.

View Article and Find Full Text PDF

The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!