A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC_LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4922882 | DOI Listing |
Nanoscale
January 2025
Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
Utilizing the soft-lattice nature of metal halide perovskites, we employ post-synthetic cross-ion exchange to synthesize a series of narrow band-gap colloidal nanocrystals of methylammonium-based lead iodide solid solutions of composition FAMAPbI, as well as those of triple-cation composition CsFAMAPbI (TCPbI). The ability to finely tune the compositions not only helps in tailoring the optical properties in the near-infrared region, but also improves the stability of these colloidal nanocrystals towards moisture, which has been demonstrated as compared to their bulk counterparts. The thermal stability of these solid solutions is also comparable to that of the bulk, as evidenced by thermogravimetric studies.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
Background And Aim: Qualitative diagnosis of ulcerative colitis-associated neoplasia (UCAN) is crucial for surveillance colonoscopy in patients with ulcerative colitis (UC). Although the utility of magnifying endoscopy with narrow-band imaging (ME-NBI) in sporadic neoplasia diagnosis has been reported, its efficacy in UCAN remains unclear. This study aimed to evaluate the usefulness of ME-NBI for qualitative diagnosis of UCAN.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.
In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.
View Article and Find Full Text PDFDalton Trans
January 2025
Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
Förster resonance energy transfer (FRET) is becoming a valuable technique in gas-phase structural biology for identifying local structural motifs and conformations of biological molecules, such as peptides and proteins. This method involves labeling the biomolecule with two dyes, a donor dye and an acceptor dye, that are commonly charged rhodamines. Here we examine how different amino acid (AA) methyl esters linked to the dye via amide linkages can influence the dye transition energy and, consequently, the energy-transfer efficiency, using cryogenic ion fluorescence spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!