Capillary electrophoresis determination of non-protein amino acids as quality markers in foods.

J Chromatogr A

Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain. Electronic address:

Published: January 2016

AI Article Synopsis

  • Non-protein amino acids are important in food as they can form during processing, act as metabolic intermediates, or serve as additives for enhanced nutritional and functional benefits.
  • The article reviews recent advancements in analytical techniques, specifically capillary electrophoresis and microchip capillary electrophoresis, for effectively analyzing non-protein amino acids in food.
  • It includes crucial details on sample treatment, separation and detection methods, preconcentration strategies, and detection limits.

Article Abstract

Non-protein amino acids mainly exist in food as products formed during food processing, as metabolic intermediates or as additives to increase nutritional and functional properties of food. This fact makes their analysis and determination an attractive field in food science since they can give interesting information on the quality and safety of foods. This article presents a comprehensive review devoted to describe the latest advances in the development of (achiral and chiral) analytical methodologies by capillary electrophoresis and microchip capillary electrophoresis for the analysis of non-protein amino acids in a variety of food samples. Most relevant information related to sample treatment, experimental separation and detection conditions, preconcentration strategies and limits of detection will be provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2015.07.078DOI Listing

Publication Analysis

Top Keywords

capillary electrophoresis
12
non-protein amino
12
amino acids
12
food
5
electrophoresis determination
4
determination non-protein
4
acids quality
4
quality markers
4
markers foods
4
foods non-protein
4

Similar Publications

Investigation and elimination of noncovalent artificial aggregates during non-reduced capillary electrophoresis-sodium dodecyl sulfate analysis of a multi-specific antibody.

J Pharm Biomed Anal

January 2025

State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:

Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.

View Article and Find Full Text PDF

Background: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.

View Article and Find Full Text PDF

Background: Glycosylated hemoglobin (HbA1c) is a stable compound in human blood that covalently binds the N-terminal valine residue of the β-chain in hemoglobin A to the free aldehyde group of glucose. It can reflect the average blood glucose level of patients in the past 2 - 3 months. Therefore, the accuracy of HbA1c detection results is of great significance for the diagnosis and differential diagnosis of diabetes.

View Article and Find Full Text PDF

To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M.

View Article and Find Full Text PDF

Spatial metabolomics platform combining mass spectrometry imaging and in-depth chemical characterization with capillary electrophoresis.

Talanta

January 2025

Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:

Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!