The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4922226 | DOI Listing |
Sci Rep
January 2025
Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we investigate the specific underlying cognitive processes during auditory perceptual decision-making that are impacted by NIHL.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
December 2024
Technical University of Darmstadt, Institute of Psychology.
The goal of the present investigation was to perform a registered replication of Jones and Macken's (1995b) study, which showed that the segregation of a sequence of sounds to distinct locations reduced the disruptive effect on serial recall. Thereby, it postulated an intriguing connection between auditory stream segregation and the cognitive mechanisms underlying the irrelevant speech effect. Specifically, it was found that a sequence of changing utterances was less disruptive in stereophonic presentation, allowing each auditory object (letters) to be allocated to a unique location (right ear, left ear, center), compared to when the same sounds were played monophonically.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Image Processing Laboratory, University of Valencia, Valencia, Spain.
In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity.
View Article and Find Full Text PDFNeural Comput
January 2025
Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.
Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
Faculty of Science & Technology, Department of Psychology, Bournemouth University.
Computational models of eye movement control during reading have revolutionized the study of visual, perceptual, and linguistic processes underlying reading. However, these models can only simulate and test predictions about the reading of single lines of text. Here we report two studies that examined how input variables for lexical processing (frequency and predictability) in these models influence the processing of line-final words.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!