Low-Level Stress Induces Production of Neuroprotective Factors in Wild-Type but Not BDNF+/- Mice: Interleukin-10 and Kynurenic Acid.

Int J Neuropsychopharmacol

Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX (Ms Dugan, Ms Parrott, Ms Redus, Dr Hensler, and Dr O'Connor); Audie L Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX (Dr O'Connor).

Published: August 2015

Background: Brain-derived neurotrophic factor (BDNF) deficiency confers vulnerability to stress, but the mechanisms are unclear. BDNF(+/-) mice exhibit behavioral, physiological, and neurochemical changes following low-level stress that are hallmarks of major depression. After immune challenge, neuroinflammation-induced changes in tryptophan metabolism along the kynurenine pathway mediate depressive-like behaviors.

Methods: We hypothesized that BDNF(+/-) mice would be more susceptible to stress-induced neuroinflammation and kynurenine metabolism, so BDNF(+/-) or wild-type littermate mice were subject to repeated unpredictable mild stress. Proinflammatory cytokine expression and kynurenine metabolites were measured.

Results: Unpredictable mild stress did not induce neuroinflammation. However, only wild-type mice produced the neuroprotective factors interleukin-10 and kynurenic acid in response to repeated unpredictable mild stress. In BDNF(+/-) mice, kynurenine was metabolized preferentially to the neurotoxic intermediate 3-hydroxykynurenine following repeated unpredictable mild stress.

Conclusions: Our data suggest that BDNF may modulate kynurenine pathway metabolism during stress and provide a novel molecular mechanism of vulnerability and resilience to the development of stress-precipitated psychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815464PMC
http://dx.doi.org/10.1093/ijnp/pyv089DOI Listing

Publication Analysis

Top Keywords

bdnf+/- mice
16
unpredictable mild
16
repeated unpredictable
12
mild stress
12
low-level stress
8
neuroprotective factors
8
interleukin-10 kynurenic
8
kynurenic acid
8
kynurenine pathway
8
mice
6

Similar Publications

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.

Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse and memory failure, and severe cognitive impairment. Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and has been reported to alleviate memory impairment in AD. Irisin, an exercise-induced hormone, is secreted following proteolytic cleavage of fibronectin type-III-domain-containing 5 (FNDC5).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!