Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Noise-induced hearing disorders are a significant public health concern. One cause of such disorders is exposure to high sound pressure levels (SPLs) above 85 dBA for eight hours/day. High SPL exposures occur in occupational and recreational settings and affect a substantial proportion of the population. However, an even larger proportion is exposed to more moderate SPLs for longer durations. Therefore, there is significant need to better understand the impact of chronic, moderate SPL exposures on auditory processing, especially in the absence of hearing loss. In this study, we applied functional magnetic resonance imaging (fMRI) with tonal acoustic stimulation on an established broadband rat exposure model (65 dB SPL, 30 kHz low-pass, 60 days). The auditory midbrain response of exposed subjects to 7 kHz stimulation (within exposure bandwidth) shifts dorsolaterally to regions that typically respond to lower stimulation frequencies. This shift is quantified by a region of interest analysis that shows that fMRI signals are higher in the dorsolateral midbrain of exposed subjects and in the ventromedial midbrain of control subjects (p<0.05). Also, the center of the responsive region in exposed subjects shifts dorsally relative to that of controls (p<0.05). A similar statistically significant shift (p<0.01) is observed using 40 kHz stimulation (above exposure bandwidth). The results suggest that high frequency midbrain regions above the exposure bandwidth spatially expand due to exposure. This expansion shifts lower frequency regions dorsolaterally. Similar observations have previously been made in the rat auditory cortex. Therefore, moderate SPL exposures affect auditory processing at multiple levels, from the auditory cortex to the midbrain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2015.07.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!