High-throughput cardiac safety evaluation and multi-parameter arrhythmia profiling of cardiomyocytes using microelectrode arrays.

Toxicol Appl Pharmacol

RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.

Published: October 2015

AI Article Synopsis

  • Microelectrode arrays (MEAs) are used to analyze the drug response of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) by recording field potentials, leading to a comprehensive data set that assesses arrhythmia risks.
  • A systematic analysis method is developed, incorporating six parameters for detecting signal irregularities in cardiomyocytes, along with software that automates the analysis and creates heat maps for quick visualization of arrhythmic potential.
  • The study examines the arrhythmogenic effects of seven drugs and finds that the MEA parameters correlate well with existing clinical data, suggesting this approach has strong predictive capability for assessing arrhythmia liability.

Article Abstract

Microelectrode arrays (MEAs) recording extracellular field potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) provide a rich data set for functional assessment of drug response. The aim of this work is the development of a method for a systematic analysis of arrhythmia using MEAs, with emphasis on the development of six parameters accounting for different types of cardiomyocyte signal irregularities. We describe a software approach to carry out such analysis automatically including generation of a heat map that enables quick visualization of arrhythmic liability of compounds. We also implemented signal processing techniques for reliable extraction of the repolarization peak for field potential duration (FPD) measurement even from recordings with low signal to noise ratios. We measured hiPS-CM's on a 48 well MEA system with 5minute recordings at multiple time points (0.5, 1, 2 and 4h) after drug exposure. We evaluated concentration responses for seven compounds with a combination of hERG, QT and clinical proarrhythmia properties: Verapamil, Ranolazine, Flecainide, Amiodarone, Ouabain, Cisapride, and Terfenadine. The predictive utility of MEA parameters as surrogates of these clinical effects were examined. The beat rate and FPD results exhibited good correlations with previous MEA studies in stem cell derived cardiomyocytes and clinical data. The six-parameter arrhythmia assessment exhibited excellent predictive agreement with the known arrhythmogenic potential of the tested compounds, and holds promise as a new method to predict arrhythmic liability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2015.07.024DOI Listing

Publication Analysis

Top Keywords

microelectrode arrays
8
arrhythmic liability
8
high-throughput cardiac
4
cardiac safety
4
safety evaluation
4
evaluation multi-parameter
4
multi-parameter arrhythmia
4
arrhythmia profiling
4
profiling cardiomyocytes
4
cardiomyocytes microelectrode
4

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Background: Alzheimer's (AD) and Parkinson's disease (PD) feature progressive neurodegeneration in a remarkably regionally selective manner. Post mortem studies have posited a role for cell autonomous mechanisms driving this, so we aimed to examine a live human induced pluripotent stem cell (iPSC) model to see whether it can replicate the phenomenon of selective neuronal vulnerability, so to better determine disease mechanisms and therapeutic targets.

Method: iPSC-derived neurons offer a rare opportunity to examine cell autonomous vulnerability in live human cells.

View Article and Find Full Text PDF

Background: Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods and even in adult stage can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between Pb exposure and Alzheimer's Disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking Pb exposure and increased AD risk, however, remains elusive.

View Article and Find Full Text PDF

NeuTox 2.0: A hybrid deep learning architecture for screening potential neurotoxicity of chemicals based on multimodal feature fusion.

Environ Int

December 2024

Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.

Chemically induced neurotoxicity is a critical aspect of chemical safety assessment. Traditional and costly experimental methods call for the development of high-throughput virtual screening. However, the small datasets of neurotoxicity have limited the application of advanced deep learning techniques.

View Article and Find Full Text PDF

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!