Small interfering RNA (siRNA)-based therapies allow targeted correction of molecular defects in distinct cell populations. Although efficient in multiple cell populations, dendritic cells (DCs) seem to resist siRNA delivery. Using fluorescence labeling and radiolabeling, we show that cholesterol modification enables siRNA uptake by DCs in vitro and in vivo. Delivery of cholesterol-modified p40 siRNA selectively abolished p40 transcription and suppressed TLR-triggered p40 production by DCs. During immunization with peptide in CFA, cholesterol-modified p40 siRNA generated p40-deficient, IL-10-producing DCs that prevented IL-17/Th17 and IFN-γ/Th1 responses. Only cholesterol-modified p40-siRNA established protective immunity against experimental autoimmune encephalomyelitis and suppressed IFN-γ and IL-17 expression by CNS-infiltrating mononuclear cells without inducing regulatory T cells. Because cholesterol-modified siRNA can thus modify selected DC functions in vivo, it is intriguing for targeted immune therapy of allergic, autoimmune, or neoplastic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1402989 | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, Changchun University, Changchun 130022, China. Electronic address:
Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions.
View Article and Find Full Text PDFJ Clin Med
January 2025
Cardiovascular Department, Fondazione Poliambulanza, 25124 Brescia, Italy.
This study assessed the proportion of secondary cardiovascular prevention patients who achieved low-density lipoprotein (LDL) cholesterol targets as per the 2019 ESC/EAS Dyslipidemia Guidelines. We also evaluated whether lipid-lowering therapies (LLTs) were adjusted in patients not meeting targets and analyzed the likelihood of these modifications achieving recommended levels. A multicenter, cross-sectional observational study retrospectively reviewed medical records of 1909 outpatients in 9 Italian cardiac rehabilitation/secondary prevention clinics from January 2023 to June 2024.
View Article and Find Full Text PDFJ Clin Med
January 2025
Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam.
: Sitosterolemia is a rare autosomal recessive disorder characterized by diverse clinical manifestations ranging from asymptomatic cases to the development of xanthomas, hypercholesterolemia, premature atherosclerosis, or even sudden death during childhood. It results from homozygous or compound heterozygous pathogenic variants in the or genes. Prompt detection and intervention are essential to managing this condition and preventing severe outcomes.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh 11451, Saudi Arabia.
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality among older adults. Lifestyle modifications, including diet, physical activity, and smoking cessation, are key to reducing cardiovascular risk. This study examines the combined effects of these behaviors on cardiovascular outcomes and their mediating mechanisms.
View Article and Find Full Text PDFBiomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!