Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objects present in our environment evoke multiple conflicting actions at every moment. Thus, a mechanism that resolves this conflict is needed in order to avoid the production of chaotic ineffective behaviours. A plausible candidate for such role is the selective attention, capable of inhibiting the neural representations of the objects irrelevant in the ongoing context and as a consequence the actions they afford. In this paper, we investigated whether a selective attention mechanism emerges spontaneously during the learning of context-dependent behaviour, whereas most neurocomputational models of selective attention and action selection imply the presence of architectural constraints. To this aim, we trained a deep neural network to learn context-dependent visual-action associations. Our main result was the spontaneous emergence of an inhibitory mechanism aimed to solve conflicts between multiple afforded actions by directly suppressing the irrelevant visual stimuli eliciting the incorrect actions for the current context. This suggests that such an inhibitory mechanism emerged as a result of the incorporation of context-independent probabilistic regularities occurring between stimuli and afforded actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10339-015-0679-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!