AI Article Synopsis

  • Alveolar macrophages (AMs) are important immune cells in the lungs that help protect against inhaled particles and manage inflammation, developing during embryonic stages and maintaining themselves throughout life with little reliance on blood-borne monocytes.
  • New research indicates that the environment significantly influences the development and functioning of AMs, with a high correlation in gene expression between AMs from embryonic and postnatal sources in the same mouse.
  • However, certain genes, like Marco, are expressed differently based on the origin of the AMs and are not affected by environmental conditions, showing that both environment and cellular origin play roles in macrophage behavior.

Article Abstract

Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566811PMC
http://dx.doi.org/10.1182/blood-2015-01-624809DOI Listing

Publication Analysis

Top Keywords

transcriptome analysis
8
alveolar macrophages
8
analysis highlights
4
highlights conserved
4
conserved difference
4
difference embryonic
4
embryonic postnatal-derived
4
postnatal-derived alveolar
4
macrophages alveolar
4
ams
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.

View Article and Find Full Text PDF

Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton.

Mol Plant Pathol

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.

View Article and Find Full Text PDF

Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.

Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!