Background: Household indoor air pollution (IAP) is a global health problem and a risk factor for childhood respiratory disease; the leading cause of mortality in African children. This study aimed to describe the home environment and measure IAP in the Drakenstein Child Health Study (DCHS), an African birth cohort.
Methods: An antenatal home visit to assess the home environment and measure IAP (particulate matter, sulphur dioxide, nitrogen dioxide, carbon monoxide and volatile organic compounds (VOCs)) was done on pregnant women enrolled to the DCHS, in a low-socioeconomic, peri-urban South African community. Urine cotinine measured maternal tobacco smoking and exposure. Dwellings were categorised according to 6 household dimensions. Univariate and multivariate analysis explored associations between home environment, seasons and IAP levels measured.
Results: 633 home visits were completed, with IAP measured in 90% of homes. Almost a third of participants were of the lowest socio-economic status and the majority of homes (65%) lacked 2 or more of the dwelling category dimensions. Most households had electricity (92%), however, fossil fuels were still used for cooking (19%) and heating (15%) in homes. Antenatal maternal smoking prevalence was 31%; 44% had passive smoke exposure. Of IAP measured, benzene (VOC) was significantly above ambient standards with median 5.6 μg/m3 (IQR 2.6-17.1). There were significant associations between the use of fossil fuels for cooking and increased benzene [OR 3.4 (95% CI 2.1-5.4)], carbon monoxide [OR 2.9 (95% CI 1.7-5.0)] and nitrogen dioxide [OR 18.6 (95% CI 3.9-88.9)] levels. A significant seasonal association was found with higher IAP levels in winter.
Conclusion: In this low-socioeconomic African community, multiple environmental factors and pollutants, with the potential to affect child health, were identified. Measurement of IAP in a resource-limited setting is feasible. Recognising and quantifying these risk factors is important in effecting public health policy changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.06.136 | DOI Listing |
Humans have a long-standing relationship with the natural world, particularly in how they engage with plants-referred to as people-plant relationships. While plants naturally live outdoors, people have been including them inside built environments for centuries. Although the benefits of indoor plants are well documented in research, there is limited exploration of individuals' subjective relationships with their indoor plants.
View Article and Find Full Text PDFArch Public Health
December 2024
Department of Environmental Sciences, Faculty of Natural Resources, University of Guilan, Someh Sara, Guilan, Iran.
Background: This study evaluated the prevalence of sick building syndrome (SBS) in Rasht, Iran, a subtropical climate with wetter cold season city, during the autumn and winter months of 2020, focusing on the effects of noise and ventilation.
Methods: A total of 420 residents completed the indoor air climate questionnaire (MM040EA), and a walk-through survey of 45 randomly selected residential units assessed environmental noise, ventilation rate, and luminous conditions.
Results: Approximately 38.
Environ Res
December 2024
Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Electronic address:
Titanium dioxide (TiO) is the most commonly used catalyst for fabricating commercial photocatalytic air purifier (AP) systems. The AP performance can be affected sensitively by the preparation conditions of filters and the physicochemical properties (e.g.
View Article and Find Full Text PDFSci Total Environ
December 2024
Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
December 2024
São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil. Electronic address:
Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!