Objectives: The aim of the study was to compare the cochlear functions of children diagnosed with familial Mediterranean fever (FMF) with healthy controls and to determine their cochlear functions according to their disease severity.
Methods: Seventy-three children with FMF and 30 healthy controls were included in the study. All the patients and controls were evaluated by audiologic evaluation, including high-frequency pure-tone audiometry and distortion product otoacoustic emission tests (DPOAE). The disease severity was evaluated by scoring systems adapted from those used by Pras et al. and with severity scoring systems from the Sheba Medical Center.
Results: High-frequency pure-tone audiometry and DPOAE levels were normal in both patients and controls. Significant differences in the hearing levels of FMF patients were not found, according to both adapted severity scoring systems.
Conclusions: Cochlear functions in children with FMF had been evaluated by previous studies, but in our study we evaluated hearing functions according to both controls and disease severity. As a unique study comparing cochlear functions according to severity scores, no significant differences were shown between the groups and controls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijporl.2015.07.020 | DOI Listing |
Nat Commun
December 2024
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
This study aimed to compare the effects of cochlear implantation(CI) on vestibular function in patients with large vestibular aqueduct syndrome(LVAS) and in patients with extremely severe deafness with normal inner ear structure. A total of 28 LVAS patients and 28 patients with normal inner ear structure who suffered from extremely severe deafness were selected. The parameters of caloric tests, bone conduction evoked cervical vestibular-evoked myogenic potentials(cVEMP), bone conduction evoked ocular vestibular-evoked myogenic potentials(oVEMP) and video head impulse tests(v-HIT) were compared between the two groups before and after CI.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Marine Sciences, National Research Council (CNR-ISMAR), Bologna, Italy.
Anthropogenic and climate factors are increasingly affecting the composition and functions of many marine biogenic reefs globally, leading to a decline in associated biodiversity and ecosystem services. Once dominant ecological component, modern oyster reefs in the Mediterranean and Black Sea and the Atlantic Ocean have already been profoundly altered by overharvesting, habitat loss and the introduction of alien species. Far less known are deep-water oyster reefs, which can however form substantial biogenic structures below 30 m depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!