Permeable reactive barriers (PRBs) consist of a labile carbon source that is positioned to intercept nitrate-laden groundwater to prevent eutrophication. Decomposition of carbon in the PRB drives groundwater anoxic, fostering microbial denitrification. Such PRBs are an ideal habitat to examine microbial community structure under high-nitrate, carbon-replete conditions in coastal aquifers. We examined a PRB installed at the Waquoit Bay National Estuarine Research Reserve in Falmouth, MA. Groundwater within and below the PRB was depleted in oxygen compared to groundwater at sites upgradient and at adjacent reference sites. Nitrate concentrations declined from a high of 25 μM upgradient and adjacent to the barrier to <0.1 μM within the PRB. We analyzed the total and active bacterial communities filtered from groundwater flowing through the PRB using amplicons of 16S rRNA and of the 16S rRNA genes. Analysis of the 16S rRNA genes collected from the PRB showed that the total bacterial community had high relative abundances of bacteria thought to have alternative metabolisms, such as fermentation, including candidate phyla OD1, OP3, TM7, and GN02. In contrast, the active bacteria had lower abundances of many of these bacteria, suggesting that the bacterial taxa that differentiate the PRB groundwater community were not actively growing. Among the environmental variables analyzed, dissolved oxygen concentration explained the largest proportion of total community structure. There was, however, no significant correlation between measured environmental parameters and the active microbial community, suggesting that controls on the active portion may differ from the community as a whole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579450PMC
http://dx.doi.org/10.1128/AEM.01986-15DOI Listing

Publication Analysis

Top Keywords

permeable reactive
8
reactive barriers
8
upgradient adjacent
8
barriers designed
4
designed mitigate
4
mitigate eutrophication
4
eutrophication alter
4
alter bacterial
4
bacterial community
4
community composition
4

Similar Publications

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

Individual differences in environmental sensitivity are linked to stress-related psychiatric symptoms. In previous research, we found that high environmental sensitivity can be a risk factor for increased inflammation and gut permeability, particularly when gut microbiome diversity is low. However, the specific gut bacterial taxa involved in this interaction remain unclear.

View Article and Find Full Text PDF

Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action.

Antibiotics (Basel)

January 2025

Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil.

Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of resistance, drug repositioning offers a promising alternative.

View Article and Find Full Text PDF

Non-antibiotic conditions, including organophosphorus pesticides (OPPs), have been implicated in the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) to varying degrees. While most studies focus on the toxicity of OPPs to humans and animals, their roles in ARG dissemination remain largely unexplored. In this study, we investigate the effects and involved molecular mechanisms of environmentally relevant concentrations of malathion and dimethoate, two representative OPPs, on plasmid-mediated conjugal transfer.

View Article and Find Full Text PDF

Rhanterium Epapposum Essential Oil and Its Primary Compounds Control Infection, Inflammation, and Serum Electrolyte Imbalance in Mice with Giardiasis.

Acta Parasitol

January 2025

Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Ad Dawadimi, Shaqra, 17464, Saudi Arabia.

Purpose: The present experimental study seeks to evaluate the in vitro and in vivo effects, as well as the potential mechanisms of action, of Rhanterium epapposum essential oil (REE) and its main constituents against Giardia lamblia infection.

Methods: The analysis of REE was performed using the Gas Chromatography-Mass Spectrometry (GC-MS) detector. The in vitro effects of REE and its main constituents on viability of G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!