Starch based biodegradable graft copolymer for the preparation of silver nanoparticles.

Int J Biol Macromol

Postgraduate Division of Chemistry, Midnapore College (Autonomous), Midnapore, Paschim Medinipur 721101, West Bengal, India. Electronic address:

Published: November 2015

The synthesis and characterization of a novel biodegradable graft copolymer based on partially hydrolyzed polymethylacrylate (PMA) grafted amylopectin (AP) was reported which was developed for the synthesis of silver nanoparticles from silver nitrate solution by facile green technique. The prepared graft copolymer was biodegradable which was shown by fungal growth. Characterization of silver nanoparticles was carried out by UV-VIS spectroscopy (417nm), HR-TEM, SAED and FESEM analysis. The TEM findings revealed that the silver nanoparticles are crystalline and globular shaped with average particle size ranging from 11 to 15nm. The synthesized silver nanoparticles exhibit excellent antibacterial sensitivity towards both Gram negative and Gram positive bacteria namely Vibrio parahaemolyticus (ATCC-17802) and Bacillus cereus (ATCC-14579) respectively and were also shown a good catalytic activity towards 4-nitrophenol reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.07.046DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
20
graft copolymer
12
biodegradable graft
8
silver
6
nanoparticles
5
starch based
4
based biodegradable
4
copolymer preparation
4
preparation silver
4
nanoparticles synthesis
4

Similar Publications

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.

View Article and Find Full Text PDF

Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!