While a role of promoter-proximal RNA Polymerase II (Pol II) pausing in regulation of eukaryotic gene expression is implied, the mechanisms and dynamics of this process are poorly understood. We performed genome-wide analysis of short capped RNAs (scRNAs) and Pol II chromatin immunoprecipitation sequencing (ChIP-seq) in human breast cancer MCF-7 cells to better understand Pol II pausing (Samarakkody, A., Abbas, A., Scheidegger, A., Warns, J., Nnoli, O., Jokinen, B., Zarns, K., Kubat, B., Dhasarathy, A. and Nechaev, S. (2015) RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. , 3938-3949). The data are available at the NCBI Gene Expression Omnibus under accession number GSE67041. For both ChIP and scRNA samples, we used paired end sequencing on the Illumina MiSeq instrument. For ChIP-seq, the use of paired end sequencing allowed us to avoid ambiguities in center-read definition. For scRNA seq, this allowed us to identify both the 5'-end and the 3'-end in the same run that represent, respectively, the transcription start sites and the locations of Pol II pausing. The sharpening of Pol II ChIP-seqmetagene profiles when aligned against 5'-ends of scRNAs indicates that these RNAs can be used to define the start sites for the majority of mRNA transcription events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516138PMC
http://dx.doi.org/10.1016/j.gdata.2015.06.021DOI Listing

Publication Analysis

Top Keywords

pol pausing
12
short capped
8
mcf-7 cells
8
rna polymerase
8
gene expression
8
paired sequencing
8
start sites
8
pol
6
analysis paired
4
paired pol
4

Similar Publications

Coordinated expression of replication-dependent (RD) histones genes occurs within the Histone Locus Body (HLB) during S phase, but the molecular steps in transcription that are cell cycle regulated are unknown. We report that RNA Pol II promotes HLB formation and is enriched in the HLB outside of S phase, including G1-arrested cells that do not transcribe RD histone genes. In contrast, the transcription elongation factor Spt6 is enriched in HLBs only during S phase.

View Article and Find Full Text PDF

Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA).

View Article and Find Full Text PDF

CRL3 ubiquitin ligase and Integrator phosphatase form parallel mechanisms to control early stages of RNA Pol II transcription.

Mol Cell

December 2024

Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. Electronic address:

Control of RNA polymerase II (RNA Pol II) through ubiquitylation is essential for the DNA-damage response. Here, we reveal a distinct ubiquitylation pathway in human cells, mediated by CRL3, that targets excessive and defective RNA Pol II molecules at the initial stages of the transcription cycle. Upon ARMC5 loss, RNA Pol II accumulates in the free pool and in the promoter-proximal zone but is not permitted into elongation.

View Article and Find Full Text PDF

Gene expression is regulated by controlling distinct steps of the transcriptional cycle, including initiation, pausing, elongation, and termination. Kinases phosphorylate RNA polymerase II (RNA Pol II) and associated factors to control transitions between these steps and to act as central gene regulatory nodes. Similarly, phosphatases that dephosphorylate these components are emerging as important regulators of transcription, although their roles remain less well understood.

View Article and Find Full Text PDF

Macrophages are key drivers of inflammation and tissue damage in autoimmune diseases including rheumatoid arthritis. The rate-limiting step for transcription of more than 70% of inducible genes in macrophages is RNA polymerase II (Pol II) promoter-proximal pause release; however, the specific role of Pol II early elongation control in inflammation, and whether it can be modulated therapeutically, is unknown. Genetic ablation of a pause-stabilizing negative elongation factor (NELF) in macrophages did not affect baseline Pol II occupancy but enhanced the transcriptional response of paused anti-inflammatory genes to lipopolysaccharide followed by secondary attenuation of inflammatory signaling in vitro and in the K/BxN serum transfer mouse model of arthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!