Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521157 | PMC |
http://dx.doi.org/10.1038/srep12718 | DOI Listing |
BMJ Oncol
August 2024
Technology & Innovation Center, GE HealthCare, Niskayuna, NY, USA.
Objective: Inducing tumour cell apoptosis is a primary objective of chemotherapy but, to date, there are no validated biomarkers of apoptosis sensitivity or resistance. Our objective was to image multiple apoptosis pathway proteins at single cell level and determine multi-protein associations with recurrence risk and chemotherapy response in patients with stage II colorectal cancer (CRC).
Methods And Analysis: Multiplexed imaging of 16 proteins in the intrinsic and extrinsic apoptosis pathways at single cell resolution on resected tissue from 194 patients with stage II CRC who either received adjuvant chemotherapy (n108) or were treated with surgery only (n=86).
Front Immunol
January 2025
Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland.
Background: Donor-derived cell-free DNA (dd-cfDNA) is a promising non-invasive biomarker for detecting graft injury in solid organ transplant recipients. Elevated dd-cfDNA levels are strongly associated with rejection and graft injury, especially antibody-mediated rejection (ABMR). While donor-specific antibodies (dnDSA) are crucial in ABMR, the relationship between dd-cfDNA levels and dnDSA features, such as DSA category, MFI and HLA target loci, remains unclear.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
Objective: The goal of this study was to develop a nomogram that integrates clinical data to predict the likelihood of severe postoperative peritumoral brain edema (PTBE) following the surgical removal of intracranial meningioma.
Method: We included 152 patients diagnosed with meningioma who were admitted to the Department of Neurosurgery at the Affiliated People's Hospital of Jiangsu University between January 2016 and March 2023. Clinical characteristics were collected from the hospital's medical record system.
Commun Eng
January 2025
Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China.
Driven by sustainable development goals and carbon neutrality worldwide, demands for both renewable energy and storage systems are constantly increasing. However, the lack of an appropriate approach without considering renewable intermittence and demand stochasticity will lead to capacity oversizing or undersizing. In this study, an optimal design approach is proposed for integrated photovoltaic-battery-consumer energy systems in the form of a m-kWp-kWh relationship in both centralized and distributed formats.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
Fires alter the stability of organic matter and promote soil erosion which threatens the fundamental coupling of soil biogeochemical cycles. Yet, how soil biogeochemistry and its environmental drivers respond to fire remain virtually unknown globally. Here, we integrate experimental observations and random forest model, and reveal significant divergence in the responses of soil biogeochemical attributes to fire, including soil carbon (C), nitrogen (N), and phosphorus (P) contents worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!