Purpose: Resistance to gemcitabine in pancreatic cancer (PC) may account for the failure of conventional treatments. Recently, salinomycin (SAL) has been identified as selective inhibitor of cancer stem cells (CSCs). In our study, we aimed to deliver SAL to gemcitabine-resistant PC by the aid of poly ethylene glycol-b-poly lactic acid (PEG-b-PLA) polymeric micelles (PMs).
Methods: SAL-loaded PMs were prepared and investigated in terms of pharmaceutical properties. MTT and Annexin V/PI assays were used to study cell proliferation and apoptosis in AsPC-1 cells in response to treatment with SAL micellar formulations. Alterations in CSC phenotype, invasion strength, and mRNA expression of epithelial mesenchymal transition (EMT) markers were also determined in the treated cells. In vivo antitumor study was performed in Balb/c AsPC-1 xenograft mice.
Results: PM formulations of SAL were prepared in suitable size and loading traits. In gemcitabine-resistant AsPC-1 cells, SAL was found to significantly increase cell mortality and apoptosis. It was also observed that SAL micellar formulations inhibited invasion and harnessed EMT in spite of induced expression of Snail. The in vivo antitumor experiment showed significant tumor eradication and the highest survival probability in mice treated with SAL PMs.
Conclusions: The obtained results showed the efficacy of SAL nano-formulation against PC tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-015-1737-8 | DOI Listing |
Int J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India.
The versatile nature of the urease enzyme makes it a valuable asset in biological and industrial contexts. The creation of bioconjugates using enzyme-polymer combinations has extended the shelf life and stability of urease. A triblock copolymer, PAM-co-PDPA-co-PMAA@urease (ADM@urease), was synthesized using acrylamide (AM), 2,5-dioxopyrrolidin-1-ylacrylate (DPA), methacrylic acid (MAA), and urease via the RAFT-Grafting-To polymerization method.
View Article and Find Full Text PDFActa Biomater
January 2025
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.
View Article and Find Full Text PDFNano Lett
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
cGAS-STING pathway activation has attracted considerable attention in antitumor immunotherapy, but clinical outcomes lag behind expectations due to overlooked negative feedback mechanisms. Here, we determine that STING activation promotes tumor stemness, which weakens the efficacy of STING-based therapies, presenting a double-edged sword. To address this therapeutic paradox, a simple metal-phenolic polymeric micelle (HMQ) was developed, in which Mn (a STING agonist) is coordinated with quercetin (a stemness inhibitor) and hyaluronic acid (HA), to unlock the full therapeutic potential of the cGAS-STING pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!