Background: Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds.
Results: To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93% validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43-87% of the InDels were found to be fixed within each line. The majority of detected InDels (86%) were 1-5 bases and about 63% were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33% of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5% of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction.
Conclusions: The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563830 | PMC |
http://dx.doi.org/10.1186/s12864-015-1711-1 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Int J Mol Sci
December 2024
Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.
Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.
View Article and Find Full Text PDFGene
January 2025
College of Agriculture, Hunan Agricultural University, Changsha, Hunan 410128, China. Electronic address:
Genetics
January 2025
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!