Background Aims: Previously, we showed that human mesenchymal stromal cells (hMSCs) were activated to express tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) upon TNF-α stimulation, induced cell death in triple-negative breast cancer (TNBC) MDA-MB-231 cells (MDA), and RNA released from apoptotic MDA further increased TRAIL expression in hMSCs. This feed-forward stimulation increased apoptosis in MDA cells. Here, we tested whether TRAIL-expressing hMSCs, in combination with a sub-toxic-dose of a chemotherapy drug doxorubicin, would overcome TRAIL resistance and create synergistic effects on targeting metastatic TNBC.

Methods: To optimize conditions for the combination treatment, we (i) selected an optimal condition to activate hMSCs for TRAIL expression, (ii) selected an optimal dose of doxorubicin treatment, (iii) examined underlying mechanisms in vitro and (iv) tested the efficacy of the optimized conditions in a xenograft mouse model of human breast cancer lung metastasis.

Results: The results showed that DNA fragments from apoptotic MDA triggered hMSCs to increase further TRAIL expression in an absent in melanoma 2 (AIM2)-dependent manner, and thus higher TRAIL-expressing hMSCs stimulated with synthetic DNA, poly(deoxyadenylic-deoxythymidylic) acid [poly(dA:dT)], more effectively suppressed tumor progression in vivo. Furthermore, activated hMSCs increased apoptosis in MDA cells when combined with a sub-toxic dose of doxorubicin, which was mediated by up-regulating TRAIL and Fas-related pathways. When we combined the optimized conditions, pre-activated hMSCs with poly (dA:dT) synergistically reduced tumor burden even with minimal doxorubicin treatment in a xenograft mouse model of human breast cancer lung metastasis.

Conclusions: These results suggest that the treatment of hMSCs with a sub-toxic dose of doxorubicin can overcome TRAIL resistance and be a potential novel therapy for TNBC metastasis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2015.06.009DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
trail expression
12
dose doxorubicin
12
hmscs
9
human mesenchymal
8
mesenchymal stromal
8
stromal cells
8
apoptotic mda
8
increased apoptosis
8
apoptosis mda
8

Similar Publications

Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!