Magnetic resonance imaging (MRI) can depict not only anatomical information, but also physiological factors such as velocity and pressure gradient. Measurement of these physiological factors is necessary to understand the cerebrospinal fluid (CSF) environment. In this study we quantified CSF motion in various parts of the CSF space, determined changes in the CSF environment with aging, and compared CSF pressure gradient between patients with idiopathic normal pressure hydrocephalus (iNPH) and healthy elderly volunteers. Fifty-seven healthy volunteers and six iNPH patients underwent four-dimensional (4D) phase-contrast (PC) MRI. CSF motion was observed and the pressure gradient of CSF was quantified in the CSF space. In healthy volunteers, inhomogeneous CSF motion was observed whereby the pressure gradient markedly increased in the center of the skull and gradually decreased in the periphery of the skull. For example, the pressure gradient at the ventral surface of the brainstem was 6.6 times greater than that at the convexity of the cerebrum. The pressure gradient was statistically unchanged with aging. The pressure gradient of patients with iNPH was 3.2 times greater than that of healthy volunteers. The quantitative analysis of 4D-PC MRI data revealed that the pressure gradient of CSF can be used to understand the CSF environment, which is not sufficiently given by subjective impression of the anatomical image.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628156PMC
http://dx.doi.org/10.2176/nmc.oa.2014-0339DOI Listing

Publication Analysis

Top Keywords

pressure gradient
32
healthy volunteers
16
csf environment
12
csf motion
12
pressure
11
csf
11
quantitative analysis
8
cerebrospinal fluid
8
normal pressure
8
pressure hydrocephalus
8

Similar Publications

Purpose: This study assesses the efficacy and safety of Portal Vein Recanalization with Intrahepatic Portosystemic Shunt (PVR-TIPS) in non-cirrhotic patients with chronic portal vein occlusion (CPVO), cavernomatous transformation, and symptomatic portal hypertension (PH) and/or portal vein thrombotic progression.

Material And Methods: Medical records of 21 non-cirrhotic patients with CPVO and portal cavernoma undergoing PVR-TIPS were analyzed. Hemodynamic (intraprocedural reduction in portosystemic pressure gradient), clinical (data on gastrointestinal bleeding, abdominal pain, ascites, and presence of esophageal varices from imaging exams) and technical success (PVR-TIPS) assessed efficacy.

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

Numerical assessment of portal pressure gradient (PPG) based on clinically measured hepatic venous pressure gradient (HVPG) for liver cirrhosis patients.

J Biomech

January 2025

Department of Gastroenterology and Hepatology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, PR China. Electronic address:

Portal hypertension (PH) is the initial and main consequence of liver cirrhosis. Hepatic venous pressure gradient (HVPG) measurement has been widely used to estimate portal pressure gradient (PPG) and detect portal hypertension. However, some clinical studies have found poor correlation between HVPG and PPG, which may lead to the misdiagnosis of portal hypertension.

View Article and Find Full Text PDF

Increasing pesticide diversity impairs soil microbial functions.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!